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Abstract Two identical or similar code fragments form a clone pair. Previous
studies have identified cloning as a risky practice. Therefore, a developer needs
to be aware of any clone pairs in order to properly propagate any changes be-
tween clones. A clone pair may experience many changes during the creation
and maintenance of a software system. A change can either maintain or remove
the similarity between clones in a clone pair. If a change maintains the similar-
ity between clones, the clone pair is left in a consistent state. When a change
makes the clones no longer similar, the clone pair is left in an inconsistent
state. The set of states and changes experienced by clone pairs over time form
an evolution history known as a clone genealogy. In this paper, we examine
clone genealogies to identify fault-prone “patterns” of states and changes. We
explore the use of clone genealogy information in fault prediction. We conduct
a quasi-experiment with four long-lived software systems (i.e., Apache Ant,
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ArgoUML, JEdit, Maven) and identify clones using the NiCad and iClones
clone detection tools. Overall, we find that the size of the clone can impact the
fault-proneness of a clone pair. However, there is no clear impact of the time
interval between changes to a clone pair on the fault-proneness of the clone
pair. We also discover that adding clone genealogy information can increase
the explanatory power of fault prediction models.

Keywords Clone genealogies; Fault-proneness; Metrics.

1 Introduction

Cloning occurs when two code segments are highly similar or identical to each
other. Each code segment is known as a clone, and the two clones form a clone
pair. A clone group is a set of code segments, where any two of them form a
clone pair. Cloning is a common practice in software development. Some clones
are introduced intentionally through the copy and paste actions of developers,
while others are introduced accidentally [1].

Once created, clones evolve as they are modified during both the devel-
opment and maintenance phases of software systems. A clone pair is in a
consistent state if the clones are identical or similar. A clone pair is in an in-
consistent state if they are no longer similar. Over time, a clone pair is either in
a consistent state or an inconsistent state. Clones that become inconsistent can
be later re-synchronized, and consistent clones can diverge. The set of states
and changes between the states experienced by a clone pair across versions of
a system is known as a “clone pair genealogy”. Furthermore, a clone geneal-
ogy can exhibit a specific “clone evolutionary pattern”, which defines a specific
ordering of states and changes that occur frequently in clone genealogies over
the lifetime of a software system. For example, a consistent clone pair that
transitions to an inconsistent state, and then re-synchronizes to a consistent
state is known as late propagation [2]. Clone pairs that transition to inconsis-
tent states during their evolution are difficult to monitor using clone detection
tools. Hence, they are more at risk of faults due to a lack of propagation of
changes.

Previous studies [2,3,4,5] on clone genealogies have defined specific clone
evolutionary patterns and studied their relationship with faults. Specific clone
evolutionary patterns have been identified as fault-prone without detailed in-
formation. More specifically, a genealogy only provides details about the past,
but cannot inform a developer about whether the current state or the next
change will be risky. Moreover, the history of the clone groups has also not
been considered when predicting faults in clones. In our work, we examine
clone evolutionary patterns and changes within clone genealogies and their
relationship with faults and strive to provide insights on the characteristics of
fault-prone clones. For each clone group, we analyze all the clone pairs within
the clone group. We chose to study clone pairs instead of clone groups since
clone pairs within the same clone group are not equally risky. Additionally,
we investigate if metrics collected from clone pair genealogies can improve the
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performance of prediction models when identifying clone pairs that are at a
higher risk of faults.

We investigate the clone genealogies of four open source software systems
(i.e., Apache Ant, ArgoUML, JEdit, Maven). Using the cloning informa-
tion from each system, we address the following research questions:

– RQ1: Which clone evolutionary patterns and clone changes are most at risk
of faults? We examine if a specific evolutionary pattern or change is found
to be more prone to faults. Clone pairs exhibiting a fault-prone pattern or
experiencing a fault-prone change should be flagged for future monitoring.

– RQ2: Does the size of a clone or the time interval between changes affect
the fault-proneness of a clone pair? We expand on the previous question
to determine if the size of the clone (in LOC) or the time interval between
consecutive changes to a clone pair can be used to highlight fault-prone
clone pairs. We suggest that these characteristics may influence the fault-
proneness of clone evolutionary patterns and changes. Our results can be
used to refine the identification of clone pairs at risk of faults. This helps
determine where testing and review efforts should be focused.

– RQ3: Can we predict faults in software clones using clone genealogy infor-
mation? One snapshot of a software system provides limited information
that can be used to predict faults in a clone pair. However, genealogy in-
formation about a clone pair takes more effort to collect and track. We
propose metrics to capture information about the genealogy of a clone
pair and we use statistical models to establish and inspect dependencies
between the metrics and faults in clone pairs.

We provide three contributions in this paper:

– We give a formal definition of clone pair genealogies and clone evolutionary
patterns.

– We identify characteristics of fault-prone clone pair states and changes
in clone pair genealogies that can be used to locate the most fault-prone
clones.

– We show that clone genealogy information can increase the explanatory
power of fault prediction models. In particular, the number of previous
faults in a clone pair can help predict future faults in the clone fragments.

Organization – Section 2 summarizes related studies on clone genealogies
and prediction of faults. Section 3 discusses the building blocks of genealogies
and clone evolutionary patterns. Section 4 outlines our study approach. Section
5 summarizes the study results. Section 6 reports on a qualitative evaluation
of the genealogies and discusses the results of the study. Section 7 discusses
the threats to the validity of our study. Section 8 concludes the paper and
outlines avenues for future work.
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2 Related Work

2.1 Clone Genealogies

Kim et al. [6] performed the first study of clone evolution. They analyzed
groups of clone snippets, known as clone classes, and described the types of
changes that can be experienced by a clone class. In our work we examine
clones at the clone pair level to identify which clone pairs are most at risk
of faults. A clone class with dozens of members may only contain a few risky
clone pairs. Kim et al. also performed a case study using CCFinder and
found that clones are very volatile. Half the clones became inconsistent within
eight check-ins. In our work, we continue to examine clones after they become
inconsistent to examine their fault-proneness.

2.2 Bug-proneness of code Clone

Rahman et al. [7] explored the relationship between defect-proneness and
code clones by analyzing four open-source C projects. They did not observe
a strong correlation between bugs and code clones, nor a correlation between
bug-proneness and cloned code size. Their findings challenge the Fowler et
al’s [8] claim that code clones are “bad code smells”. However, this study
did not take the evolution of code clones nor a more popular programming
language, Java, into account. Juergens et al. [9] conducted a case study on
open-source and commercial systems to investigate whether code clone’s in-
consistent changes can lead to defects. They observed that nearly half of the
unintentionally inconsistent changes caused defects. Although this work only
studies one type of clone evolution, it leads us to further discover the relation-
ship between bug-proneness and other clone evolution types.

2.3 Analysis of Clone Genealogies

Krinke [10] examined inconsistent and consistent changes to clones in 200
weekly snapshots of five open source systems. The study examined identi-
cal clones. About half of the changes to identical clones were consistent. The
results may have been affected by the time interval of one week between snap-
shots. Changes to the clones, including inconsistent changes, may have oc-
curred between snapshots. In our work, we examine the relationship between
delay since the last change and faults.

Krinke performed a second study on the stability of cloned code, which
was repeated and extended by Göde et al. [11]. In Göde et al.’s work, they
performed clone detection using a token-based clone detection tool, but used a
time interval between snapshots of one commit. Overall, their findings agreed
with Krinke that cloned code is much more stable than non-cloned code. They
also experimented with the parameters of their clone detection tool and showed
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that the results are impacted by the choice of parameters. Because of this
result, we use two different clone detection tools in our study, with each one
implementing a different clone detection technique. These two clone detection
tools (i.e., NiCad and iClones) were found to achieve higher precision and
recall by Svajlenko et al. [12]. For each clone detection tool, we use the same
parameters as in the study of Svajlenko et al. [12], that compared 11 different
clone detection tools.

Göde et al. [13] performed a different study on code clones and found
that over half of the clones in three systems were stagnant. In other words,
once they were formed, they were never modified. About 12% of the clones
experienced a change. In a similar study [13], Göde et al. found that 87.8% of
clones are never changed or only changed once. They suggest that these clones
are irrelevant to developers. In our study, we consider all the changes that
occurred during the evolutionary history of the clones and identify the most
fault-prone ones. We also consider metrics that contain historical information
taken from clone genealogies to identify fault-prone clone pairs.

Göde et al. [14] performed a study examining consecutive change pairs
within clone genealogies. They defined four different types of consecutive changes.
They examined the relationship between the change pair type, the delay be-
tween changes, the change author, and the location of the clones in the project
structure and whether an inconsistent change was intentional. Overall, they
found that two consecutive changes are the most common change pair, and
that few inconsistent changes were accidental.

Thummalapenta et al. [2] performed a study that looked at four different
types of clone evolutionary patterns within clone classes. They classified their
clone classes into consistent evolution, independent, delayed propagation, and
late propagation evolutionary patterns. They found that the first two patterns
were the most common types. They concluded that each pattern experienced
a different proportion of faults within a software system. In our work, we
examine clones in more detail and define further clone evolutionary patterns.

Barbour et al. [4,5] investigated faults in 8 different types of late propa-
gation and found that late propagation clones are more fault-prone when: (i)
clones in the pair undergo a diverging modification followed by a reconciling
change that modifies both clones in the clone pair; or (ii) clones in pair expe-
rience diverging changes, followed by a reconciling change that modifies only
the diverging clone in the clone pair. They also reported that the size of the
clones experiencing late propagation has an effect on the fault-proneness of
specific types of late propagation genealogies. Recently, Mondal et et al. [15]
investigated the frequency of late propagation for different types of clones (i.e.,
type 1, type 2, and type 3) using the NiCad clone detection tool. They found
that late propagation occurs more frequently in type 3 clones. They also ob-
served that late propagation of type 3 clones are more fault-prone than late
propagations of either type 1 or type 2 clones. In this paper, we build on these
previous works to analyze the fault-proneness of all types of clone evolutionary
patterns (i.e., not only late propagation).

5



Xie et al. [16] investigated two evolutionary phenomena on clones: the
mutation of the type of a clone during the evolution of a system, and the
migration of clone segments across the repositories of a software system. They
observed that clone migration and clone mutation occur frequently in clone
genealogies, and that increasing the distance between code segments in a clone
group during the evolution of the system increases the risk for faults. They also
found that mutating clones to type 2 or type 3 increases the risk for faults. In
a follow-up study [17], they examined the fault-proneness of clone migration
in clone genealogies and found that migrated clone segments, clone groups,
and clone genealogies are not equally fault-prone. They also found that when
a clone mutation occurs during a clone migration, the risk for faults in the
migrated clone is increased. The migration of a clone that was not changed
for a long period of time is also reported to be risky.

2.4 Statistical Explanatory Models

Several studies have investigated the use of process and product metrics to
build fault prediction and explanatory models.

Khoshgoftaar et al. [18] analyzed two consecutive releases of a large soft-
ware system used in telecommunications and showed that the number of past
added/removed lines of code is a good predictor of future faults at the module
level. Bernstein et al. [19] used the number of revisions and corrections on
a file, recorded in a given amount of time, to predict the location of faults.
Graves et al. [20] investigated different predictors of faults using statistical
models and found that the sum of contributions from all changes to a module
is the best predictor of faults in a module. Nagappan and Ball [21] analyzed
the relation between code churn (i.e., the amount of lines added, modified or
deleted to a file) and fault density in Windows Server 2003 and concluded that
relative code churns are better predictors of fault density than absolute code
churns. Hassan [22] introduced the notion of entropy of changes to capture
the complexity of a source code change process. He performed a case study
using six open-source software systems and found that the entropy of changes
is a better predictor of faults than traditional predictors like the amount of
changes or the number of previous faults.

El Emam et al. [23] combined Chidamber & Kemerer metrics [24] with
Briand et al.’s coupling metrics [25] to predict faults in a large commercial
Java system. Nagappan et al. [26] investigated the use of source code metrics
to predict post-release faults at the module level using five Microsoft software
systems. They found that complexity metrics can successfully predict post-
release faults, but that the set of best predictors was system-dependant. Zim-
mermann et al. [27] also used source code metrics to predict faults in Eclipse.
Arisholm and Briand [28] proposed the use of code quality, class structure,
changes in class structure, and the history of class-level changes and faults to
predict faulty classes.
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Fig. 1: Clone Pair States and Changes

Moser et al. [29] performed a comparative analysis of the predictive power
of process and source code metrics for fault prediction and found that process
metrics are better predictors of faults than product metrics. In this work, we
examine whether clone genealogy metrics can be used to increase the perfor-
mance of fault prediction models built using product and process metrics.

Kononenko et al. [30] investigated the relationships between the quality
of code review and technical, personal, and participation factors in the code
review process. They found that both personal and participation factors can
influence the quality of code review. McIntosh et al. [31] built explanatory
models to explore the impact of the code review process on software quality.
They found a significant correlation between code review quality and the fac-
tors on code review coverage, participation, and reviewers’ expertise. In this
paper, we built explanatory models to investigate the relationship between
clone genealogies metrics and fault-proneness.

3 Clone Evolutionary Patterns

3.1 States and Transitions of Clone Pairs

A clone pair can either be in a consistent state (Cs) or an inconsistent state
(Is). We define the set of states of a clone pair as S = {Cs, Is}. The two states
are shown as circles in Figure 1. A clone pair is in a consistent state if the code
segments in the pair are identical or similar (i.e., have a cloned-relationship).
A clone pair is in an inconsistent state if the code segments in the pair are no
longer similar (i.e., the cloned-relationship has been removed). An inconsistent
clone pair can transition back to a consistent state (Cs) at a later time, so we
continue to study inconsistent clone pairs.

A change is an input action that modifies the content of one or both of the
code segments in a clone pair. A change can transition the clone pair between
states, or maintain the clone pair’s current state. For example, if a clone pair
is in a consistent state and experiences a change that removes the cloned-
relationship between the code segments in the pair, the clone pair transitions
into an inconsistent state. If the change preserves the cloned-relationship be-
tween the code segments, the clone pair remains in a consistent state.
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There are four possible changes:

– Consistent Change (CONc): A change modifies one or both code segments
of a clone pair in a consistent state. Such change keeps the code segments
in the clone pair in a cloned-relationship (i.e., consistent change CONc is
the transition from consistent state Cs to consistent state Cs).

– Inconsistent Change (INCc): A change modifies one or both code seg-
ments of a clone pair in an inconsistent state. The code segments continue
to be dissimilar, so the clone pair remains in an inconsistent state (i.e.,
inconsistent change INCc is the transition from inconsistent state Is to
inconsistent state Is).

– Re-synchronizing Change (RESY NCc): A change modifies one or both
code segments of a clone pair in an inconsistent state. The change causes the
code segments to have a cloned-relationship. The clone pair transitions to a
consistent state (i.e., re-synchronizing change RESY NCc is the transition
from inconsistent state Is to consistent state Cs).

– Diverging Change (DIVc): A change modifies one or both code segments
in a clone pair in a consistent state. The change removes the cloned-
relationship between the code segments (i.e., diverging change DIVc is
the transition from consistent state Cs to inconsistent state Is).

A clone genealogy describes the evolutionary history of a clone pair. We de-
fine a clone genealogy as a finite transition system, G = {S,Act, T rans, I0, A},
where:

– The set of states is S = {Cs, Is};
– The set of actions (i.e., changes) is
Act = {CONc, INCc, RESY NCc, DIVc};

– The transition relations are
Trans = {(Cs, CONc, Cs), (Cs, DIVc, Is),
(Is, INCc, Is), (Is, RESY NCc, Cs)};

– The set of initial states is I0 = {Cs}; and
– The accepting states are A = {Cs, Is}

Figure 1 is a pictorial representation of the clone genealogy transition sys-
tem. A genealogy is a finite model, and grows as changes are applied to a clone
pair, terminating in either a consistent or an inconsistent state. A clone pair
starts from a consistent state when the clone pair can be detected. Therefore,
a clone genealogy is always initiated in a consistent state.

3.2 Six Clone Evolutionary Patterns

A “clone pair evolutionary pattern” is a path in a graph G. The graph G
represents the history of states and changes for a clone pair. It is a finite
sequence of states P = s0s1s2 . . . sn, where s0, s1, s2, . . . , sn ∈ S = {Cs, Is}.
The following six evolutionary patterns define all possible paths in graph G,
where n is an integer ≥ 1:
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– Unchanged Pattern (UNCp): The clone pair is formed, but never experi-
ences any changes (i.e., UNCp is defined as the path Cs in graph G).

– Synchronous (SY NCp): The clone pair has experienced one or more changes,
but remains in a consistent state (i.e., SY NCp is defined as the path CsC

n
s

in graph G).
– Inconsistent Pattern (INCp): After the creation of the clone pair, it tran-

sitions to an inconsistent state without ever experiencing any consistent
changes (i.e., INCp is defined as the path CsI

n
s in graph G).

– Divergent Pattern (DIVp): The clone pair experiences one or more con-
sistent changes before transitioning to an inconsistent state (i.e., DIVp is
defined as the path CsC

n
s I

n
s in graph G).

– Late Propagation Pattern (LPp): the clone pair transitions from a consis-
tent state to an inconsistent state. Later, it experiences a re-synchronizing
change that transitions it back to a consistent state (i.e., LPp is defined as
the path (Cn

s I
n
s )

nCn
s in graph G).

– Late Propagation with Diversion Pattern (LPDIVp): the clone pair un-
dergoes late propagation, but later it experiences a diverging change that
brings it back to an inconsistent state (i.e., LPDIVp is defined as the path
(Cn

s I
n
s )

nCn
s I

n
s in graph G).

A clone pair with an unchanged pattern (UNCp) never changes, and there-
fore has no evolutionary history. These clone pairs are excluded from our study.

//Clone A, Revision 7646

Diagram diagram = (Diagram) it.next();

Fig aFig = diagram.presentationFor(obj);

if (aFig != null) {

if (aFig.getOwner() == obj) {

if (includeEnclosedOnes) {

...

}

figs.add(aFig);

}

}

//Diverging Change: Clone A, Revision 10630

ArgoDiagram diagram = (ArgoDiagram) it.next();

List diagramFigs = diagram.presentationsFor(obj);

Iterator figIt = diagramFigs.iterator();

while (figIt.hasNext()) {

Fig aFig = (Fig)figIt.next();

if (includeEnclosedOnes) {

...

}

figs.add(aFig);

}

//Clone B, Revision 7632

Diagram diagram = (Diagram) it.next();

Fig aFig = diagram.presentationFor(obj);

if (aFig != null) {

if (aFig.getOwner() == obj) {

if (includeEnclosedOnes) {

...

}

c.add(aFig);

}

}

//Clone B, Revision 7632

Diagram diagram = (Diagram) it.next();

Fig aFig = diagram.presentationFor(obj);

if (aFig != null) {

if (aFig.getOwner() == obj) {

if (includeEnclosedOnes) {

...

}

c.add(aFig);

}

}

Fig. 2: An Example of an Inconsistent Genealogy from ArgoUML using NiCad
(inconsistent lines are highlighted)

Figure 2 shows an example of inconsistent clone genealogy. The example
is a code segment from a clone containing 18 lines of code and is taken from
ArgoUML using the clone detection tool NiCad. When the clone pair is cre-
ated in revision 7646 it is in a consistent state (Cs). Its genealogy is described
by the graph G and it exhibits an unchanged pattern (UNCp). Clone A then
experiences a diverging change (DIVc) that modifies several lines of code. The
clone pair is now in an inconsistent state (Is). This gives it the path CsIs in
graph G, which belongs to the inconsistent evolutionary pattern (INCp).
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The inconsistent and divergent evolutionary patterns are similar. However,
in a divergent evolutionary pattern (DIVp), a clone pair must experience at
least one consistent change before a diverging change occurs. A clone pair
demonstrating an inconsistent evolutionary pattern (INCp) diverges imme-
diately after the clone pair is formed. Clone pairs exhibiting an inconsistent
pattern (INCp) may be “false positive” clones, since the clone pair never ex-
periences any consistent or re-synchronizing changes. They may also be inten-
tionally transitioned to an inconsistent state. For example, a developer may
copy code and then extensively modify it for a new environment [32]. Because
clones exhibiting inconsistent and divergent patterns are not able to be iden-
tified by a clone detection tool, they are more difficult to monitor, and could
be more at risk of faults due to a lack of propagation of changes.

Late propagation (LPp) occurs much less frequently than other evolu-
tionary patterns [2]. However, previous studies [2] have shown that the late
propagation is risky and fault-prone. For example, the diverging change in
a late propagation may be accidental, given that the clone pair is later re-
synchronized. However, accidental changes to clones are considered risky. There-
fore, late propagation is considered risky [2]. Late propagation with diver-
sion (LPDIVp) is a special case of the late propagation evolutionary pattern.
A clone pair first experiences a late propagation evolutionary (LPp) pattern
(a diverging change later followed by a re-synchronizing change). The clone
pair then diverges a second time, creating the late propagation with diver-
sion (LPDIVp) evolutionary pattern. The frequent change of a state in the
late propagation with diversion pattern might indicate that developers have
difficulty in monitoring and propagating changes between clone pairs.

4 Study Design

This section describes the setup of our quasi-experiment that aims to iden-
tify fault-prone states and changes in clone genealogies. Figure 3 shows an
overview of the steps we use to extract clone information from a source code
repository and build clone genealogies. We describe our steps in more de-
tail in the following subsections. We share our analytic scripts and data at:
https://github.com/swatlab/clone_genealogies.

4.1 Subject Systems

We select four open-source Java systems as the subjects systems. All of the
subject systems possess a long development history, which is suitable for our
clone genealogy study.
– Apache Ant is an open-source build-tool with an extensive Java library.

We study its revision history from January 2000 to July 2016.
– ArgoUML is a UML-modelling software system. We study its commit

history from January 1998 to January 2015 (i.e., until the most recent
version of the project).
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Data analysis

Version Control 
System (Git)

Extract explanatory 
metrics

Perform clone 
detection on 
each commit

Identify fault-
prone commits

Remove 
test files

Build clone 
genealogy on 

each clone pair

Bug Repository Bug reports

commits
RQ1

RQ2

RQ3

Fig. 3: Overview of the Analysis Process.

Table 1: Characteristics of the Systems

System # LOC % Java # Commits # Clones # Genealogies
code NiCad iClones NiCad iClones

ArgoUML 253.1k 70.1 17.8k 96.7M 17.3M 16.6k 7.6k
Ant 172.3k 80.0 13.4k 7.8M 7.2M 5.5k 7.1k
JEdit 215.8k 55.9 7.7k 3.7M 8.8M 6.8k 6.5k
Maven 88.2k 79.8 10.3k 1.6M 3.3M 0.7k 0.4k

– JEdit is an open-source text editor built for programmers. It is written
in Java, and provides support for editing more than 200 programming
languages. Many plug-ins have been written for JEdit. In this study, we
only examine the editor. The project started in 1998 and is still under
development. We examine its revision history from September 2001 to July
2015.

– Maven is a build automation tool used primarily for Java projects. We
study its commit history from September 2003 to July 2016.

Table 1 summarizes the characteristics of each system. We use the SLOC-
Count tool [33] to count the total number of lines of code (LOC) and the
percentage of Java code in each project. For each project, we provide LOC for
the last studied revision. Table 2 shows the numbers of faulty changes and the
numbers of clean changes for each subject system.

We examined the length of the clone genealogies contained in the selected
software systems and observed that more than 50% of the genealogies only
experienced 1-2 changes. Figures 4 and 5 show the frequency of the number
changes in each of the clone genealogies. Overall, although the studied systems
contain high numbers of genealogies, the genealogies tend to be short. In this
paper, we do not consider the unchanged clone pattern (UNCp), hence, all the
studied clone genealogies experienced at least one change. Figure 6 depicts the
number of clone genealogies deriving from a specific commit. In this figure, we
eliminated outliers. The median value for each project is less than 3; implying
that there are only few clone genealogies starting from each commit.
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Table 2: Number of faulty and clean clone changes in each system.

NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Faulty 3,246 643 49 300 2,967 363 48 256
Clean 2,629 3,440 319 436 1,876 2,292 273 1,168
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10%

20%

30%

40%

1 2 3 4 5 6~10 11~50 >50

(a) ArgoUML
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10%

20%
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(c) JEdit
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20%

30%

40%
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(d) Maven

Fig. 4: Percentage of the frequency of the number of changes in a studied clone
genealogy detected by NiCad

4.2 Data Preprocessing

To analyze a repository’s history, Git provides high-performance functions to
extract changed files, renamed files, and blame faulty files. Since the source
code of ArgoUML and JEdit is managed by SVN, we use Git’s git-svn com-
mand to convert the two systems’ repositories to Git. Then, we use the follow-
ing command to extract each commit’s commit ID, committer email, commit
date, and commit message:

git log --pretty=format:"%H,%ae,%ai,%s"
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Fig. 5: Percentage of the frequency of the number of changes in a studied clone
genealogy detected by iClones

4
8

12
16

Ant ArgoUML JEdit Maven

(a) NiCad
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Fig. 6: Number of clone genealogies starting from a specific commit

4.3 Detecting Faulty Changes

We leverage the SZZ algorithm [34] to detect changes that introduced faults.
We first apply Fischer et al.’s heuristic [35] to identity fault-fixing commits by
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using regular expressions to detect bug IDs from the studied commit messages.
We then mine the subject systems’ bug tracking systems (issuezilla for Ar-
goUML, Jira for Ant and Maven, and SourceForge for JEdit) to extract their
bugs’ creation date. Next, we extract the modified files of each fault-fixing
commit through the following Git command:

git log [commit-id] -n 1 --name-status

In this paper, we only take modified Java files into account. Given each file F
in a commit C, we extract C’s parent commit C ′. For Ant and Maven, we use
the [commit-id]ˆ command to obtain C ′; while for ArgoUML and JEdit, since
their repositories were converted from SVN, we find the C’s precedent com-
mit C ′ by time, i.e., C ′ is the nearest commit prior to C. Then, we use Git’s
diff command to extract F ’s deleted lines. We apply Git’s blame command
to identify commits that introduced these deleted lines, noted as the “candi-
date faulty changes”. We eliminate the commits that only changed blank and
comment lines. Finally, we filter the commits that were submitted after their
corresponding bugs’ creation date.

4.4 Extracting Clone Genealogies

Extracting clone genealogies from each subject system requires three steps:
removing test files, detecting clones, and building clone genealogies.

Removing Test Files. Test files are frequently copied and then modified
to create multiple test cases, so they often contain clones. These files are
used for development purposes and not used during the normal execution of
the system. They may also contain syntactically incorrect code. For all these
reasons, we believe that clones in test code should be studied separately from
clones in production code. Therefore, we exclude test files from our study. In
future work, we plan to examine the evolution of clones in test code which are
nevertheless clones and need to be maintained. To remove the test files, we
perform a search on each system for files and folders with a filename containing
the word “test”. We then manually verify each file before removing it from the
study to prevent the automatic removal of a non-test file, such as a file with
the name “updateState.java”. At the end of this semi-automatic process, we
also manually verify all the remaining files in our data set, to ensure that no
semantically test-related files remain in the data set of our study.

Detecting Clones. We use two existing clone detection tools to detect
clones in the four systems: NiCad[36] and iClones [37]. We use the most
recent versions of both tools: NiCad-4 and iClones-0.2. We select these two
clone detection tools because they are recommended by Svajlenko et al. [12]
who compared the performance of 11 clone detection tools from the literature.
Today, NiCad and iClones are considered as state-of-the-art tools by the clone
community [12].
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Both NiCad and iClones use a hybrid approach to detect clones. We use the
default settings of Nicad to detect clones greater than 10 lines of code, while
using the default setting of iClons to detect clones with minimum 100 tokens.
We detect identical clones and clones where the variable names are different
(i.e., “blindrename”). The same settings were used by Svajlenko et al. [12] in
their comparison of 11 clone detection tools. With these settings, NiCad and
iClones were found to achieve higher precision and recall in comparison to the
other 9 clone detection tools that were studied.

We use the Git checkout command to retrieve a system’s snapshot for a
specific commit. Then we perform clone detection on each of the snapshots of
the studied systems. Table 1 summarizes the number of clone pairs and clone
genealogies found in each subject system using both clone detection tools. For
ArgoUML and Ant, Nicad detected more clone pairs than iClones; while for
JEdit and Maven, iClones detected more clone pairs. This difference in the
number of clones found by the two detection tools is likely due to the lack of
agreement on the definition of code clones [38] and to the implementation of
the tools.

Building Clone Genealogies. Each clone detection tool outputs a list
of clones within each source code repository. To create a set of clone pair
genealogies, we link the clone pairs between each commit. A change to a clone
can affect its size. A change to the file containing the clone, even if it does
not affect the clone itself, can shift the clone’s line numbers. To account for
these changes when mapping clones, we use the Git diff command to query
for a list of changes to each Java file. We limit our genealogies to describe only
changes that modify the clone contents, not the clone line numbers. This is
because a shift in the line numbers cannot cause the clone pair to transition
to a different state.

We build a clone genealogy for each clone pair detected by the clone detec-
tion tool. We first extract a system’s commit sequence list. For ArgoUML and
JEdit, which were originally managed by SVN, we sort their commits by time
in ascending order. For Ant and Maven, which are managed by Git, we make
a list and put a system’s last commit as the first element. Then we recursively
look for the list’s last element’s parent commit until the system’s first commit
is met. We reverse the lists to obtain Ant and Maven’s commit sequence lists.

For each clone pair, we track its modification in every commit along the
commit sequence list. If a commit, Cnew, changed a file that contains code
in the clone pair, we use the diff command to compare the commit with
its previous commit, Cold, in order to check whether the clone snippets are
modified and to map the start line and end line numbers from Cold to Cnew.
We use Python’s third-party patch parsing library whatthepatch [39] to extract
the line mapping on a clone file between Cold and Cnew. In case that the first
lines, L1 ∼ Ln, of a clone snippets are deleted in Cold and no corresponding
line added in Cnew to replace these deleted lines, we map Ln+1 from Cold to
Cnew as the start line. Similarly, in case that the last lines, Lx ∼ Lx+n are
deleted in Cold and no corresponding line added in Cnew to replace them, we
map Lx−1 from Cold to Cnew as the end line.
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We decide whether a clone is changed when there is any deleted or added
lines performed in the clone’s boundaries. If a clone is modified, we determine
whether the new state of the clone pair is inconsistent (Is) or consistent (Cs).
We verify this by searching the clone pair list generated by a clone detection
tool. We query the list for a matching clone pair in the new commit, Cnew,
that contains the start and end line numbers of the clone pair. If no clone pair
is found, then the state of the clone is inconsistent and an inconsistent state
(Is) is added to the genealogy. If a clone is found, then a consistent state (Cs)
is added to the genealogy. This process is repeated for each commit in the
commit sequence list or until one or both of the clones is deleted. We use the
following command to extract renamed files in a new commit:

git diff [old-commit] [new-commit] --name-status -M

This command can extract file pair, where a file is deleted and another file is
added in the new commit and the two files have a code similarity greater than
50%. In this paper, we only consider the file pairs with more than 99% of code
similarity as renamed files. When searching the clone sequence list, we allow
a matching clone to be bigger than the clone pair, and contain the smaller
clone. For example, if one of the clones in a clone pair is from lines 1 to 10,
a matching clone in the clone pair list could be from lines 1 to 20. Although
we add the bigger clone from the clone pair list to our genealogy, we continue
to monitor only the smaller clone to generate the genealogy. The bigger clone
(i.e., lines 1 to 20 in our example) might disappear in a future revision, but
the smaller clone (i.e., lines 1 to 10 in our example) persists after the bigger
clone is removed.

5 Study Results

This section reports and discusses the results of our study.

5.1 RQ1: Which clone evolutionary patterns and clone changes are most at
risk of faults?

Motivation Developers are interested in identifying areas of a software ap-
plications that have a higher likelihood of faults. Previous studies [40] have
identified clones as more fault-prone than non-cloned code. Clones occur fre-
quently, with as much as one fifth of a software system containing duplicate
code [1]. However, not all the clones lead to faults. It can be resource con-
suming to monitor all clone pairs for faults. It is beneficial if we can identify
characteristics of fault-prone clone pairs, risky clone pairs can be highlighted
for monitoring. In this research question, we examine whether the evolution-
ary pattern exhibited by the clone pair can be used to locate fault-prone clone
pairs. Additionally, we study the different changes described in Section 3 to
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determine whether some types of changes are more likely to induce faults than
others. This will make developers more aware of the potential risk of perform-
ing a specific type of change to a system.

Approach We examine this research question using the odds ratio (OR) and
validate the statistical significance of the results using the Fisher’s exact test.
The Fisher’s exact test [41] determines whether there are non random associa-
tions between two categorical variables (e.g., a clone evolutionary pattern and
the occurrence of faults). In this paper, we use a 95% confidence level (i.e.,
α = 0.05) as the cutoff to decide whether there exists statistically significant
difference between a clone evolutionary pattern and the occurrence of faults.
Since we will perform more than one comparison, we use Bonferroni correc-
tion [42] to control the familywise error rate. Concretely, we use the adjusted
p-value, which is multiplied by the number of comparisons. The odds ratio
compares the odds of an event occurring in two different groups, the “control”
group and the “experimental” group. An OR = 1 implies that the event is
equally likely in both the control and experimental group, an OR > 1 implies
that the event is more likely in the experimental group, and an OR < 1 implies
that it is more likely in the control group. An OR value close to zero or infinity
means that the difference between the ratios of the odds of experiencing a fault
by clone evolutionary patterns from the two groups is very large.

After building the set of clone genealogies for a subject system, we iden-
tify all clone evolutionary patterns within the genealogies. For each genealogy
graph G, we visit each state in G and identify the clone evolutionary pattern
(i.e., the path P ). Using the SZZ algorithm described in Section 4.3, we iden-
tify faulty states. We also check each change within the genealogy graph G
to determine the type of the change, and verify whether the change is fault-
inducing.

For the result of each clone detection tool, we perform the following three
tests:

Faults vs. Clone Evolutionary Patterns:Using the synchronous (SY NCp)
evolutionary pattern as the control group, we calculate the odds ratios between
the control group and each of the different evolutionary patterns (the “experi-
mental” groups). We test the following null hypothesis H01: Each type of clone
evolutionary pattern has the same proportion of clone pairs that experienced a
fault-inducing change.
We chose the SY NCp evolutionary pattern as our control group because we
expect that clones that are maintained consistently (all the changes are prop-
agated on time consistently) throughout their evolution history would be less
prone to faults than others.

Faults vs. Changes: Using consistent changes (CONc) as our control
group, we calculate the odds ratios between the consistent changes and each
of the different types of changes. We test the following null hypothesis H02:
Each change type has the same proportion of clone pairs that experienced a
fault fix as a consequence of the change.
We chose CONc changes as our control group because we expect a change that
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Table 3: Contingency Tables for Clone Evolutionary Patterns

Pattern Faulty NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Yes 514 191 5 19 709 178 3 15
SY NCp No 10,052 2,104 134 146 916 1,467 115 54

INCp
Yes 717 191 3,438 87 2,054 564 2,283 82
No 2,929 896 2,481 253 1,439 2,809 3,755 177

DIVp
Yes 836 409 187 44 1,508 464 80 38
No 802 1,521 183 94 538 1,443 196 64

LPp
Yes 19 21 1 2 62 28 4 6
No 564 37 1 3 74 40 5 2

LPDIVp
Yes 70 30 6 4 273 26 2 6
No 49 58 2 3 59 67 9 5

keeps two clone fragments in a consistent state to be less risky (i.e., to have a
low probability of introducing a fault in the system).

Faults vs. Evolutionary Patterns and Changes: We examine evo-
lutionary patterns and changes together to determine the most fault-prone
changes when a clone pair exhibits a specific clone evolutionary pattern (e.g.,
late propagation followed by a consistent change). Using the inconsistent (INCp)
evolutionary pattern followed by a diverging change (INCc) as the control
group, we calculate the odds ratio between the control group and each of the
different combinations of evolutionary patterns and changes. Each evolution-
ary pattern can be followed by only two of the four types of changes. The
final state of a clone evolutionary pattern is always consistent for the pattern.
For example, a synchronous pattern (SY NCp) will always end in a consistent
state (Cs). Therefore, a clone pair can only be in one of two states at any time
(i.e., consistent or inconsistent). Each state only has two possible transitions,
with each transition representing a change to a clone pair. For example, since a
late propagation (LPp) ends in a consistent state (Cs), it can only be followed
by a consistent change (CONc) or a diverging change (DIVc). We test the
following null hypothesis: H03: Each combination of evolutionary pattern and
change type has the same proportion of clone pairs that experienced a fault fix
as a consequence of the change.
We chose the inconsistent (INCp) evolutionary pattern followed by a diverg-
ing change (INCc) as our control group because we expect this combination
of pattern and operation to be the riskiest. Clones that experience these op-
erations cannot be tracked with a clone detection tool, hence, developers can
easily fail to propagate changes to clone fragments. The combination of INCp

and INCc is therefore a good reference upon which we can compare the odds
of faults occurring in the other combinations of genealogies and change oper-
ations.

Results We now discuss the results of the aforementioned three tests. Each of
the following subsections summarizes the results for one of the three tests. For
each evolutionary pattern, change, and combination of genealogy and change,
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Table 4: Statistical Analyses for Clone Evolutionary Patterns

Pattern Test NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

SY NCp OR 1 1 1 1 1 1 1 1

INCp
OR 4.79 2.35 41.57 2.64 1.84 1.65 23.31 1.67
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.55

DIVp
OR 20.39 2.96 27.39 3.60 3.62 2.65 15.65 2.14
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.17

LPp
OR 0.66 6.25 26.80 5.12 1.08 5.77 30.67 10.80
p-value 0.36 <0.01 0.33 0.46 1 <0.01 <0.01 0.02

LPDIVp
OR 27.94 5.70 80.40 10.25 5.98 3.20 8.52 4.32
p-value <0.01 <0.01 <0.01 0.03 <0.01 <0.01 0.23 0.13

Table 5: Contingency Tables for Clone Pair Changes

Change Faulty NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Yes 8,263 1,080 43 317 4,942 763 43 164
CONc No 17,164 9,627 584 339 2,902 6,495 450 139

DIVc
Yes 2,922 950 2,383 206 3,979 1,009 3,240 181
No 3,188 2,303 4,334 191 2,384 4,525 3,106 213

INCc
Yes 4,300 5,874 6,955 310 8,828 12,456 6,326 302
No 2,833 7,758 20,921 360 3,994 18,816 14,613 321

RESY NCc
Yes 115 20 5 7 309 19 4 13
No 595 129 6 5 186 146 18 10

Table 6: Statistical Analyses for Clone Pair Changes

Change Test NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

CONc OR 1 1 1 1 1 1 1 1

DIVc
OR 1.90 3.68 7.47 0.76 0.98 1.90 10.92 0.72
p-value <0.01 <0.01 <0.01 0.07 1 <0.01 <0.01 0.10

INCc
OR 3.15 6.75 4.52 0.92 1.30 5.64 4.53 0.80
p-value <0.01 <0.01 <0.01 1 <0.01 <0.01 <0.01 0.32

RESY NCc
OR 0.40 1.38 11.32 1.50 0.98 1.11 2.33 1.10
p-value <0.01 0.52 <0.01 1 1 1 0.39 1

we provide the number of faulty and clean occurrences in Table 3, Table 5,
and Table 7.

Faults vs. Clone Evolutionary Patterns: Table 4 summarizes the re-
sults of the odds ratio and Fisher’s exact test. For each clone evolutionary
pattern we show the obtained odds ratios and p-values. If an adjusted p-value
of the Fisher’s exact test is less than 0.05, it is marked in bold.

For all studied system, when the p-value is less than 0.05 (i.e., the difference
is statistically significant), the OR values of INCp, DIVp, LPp, and LPDIVp
are greater than 1; meaning that the risk for faults is higher when clones follow
other patterns in comparison to the SY NCp pattern. In JEdit and Maven, we
could not find enough occurrences of LPp or LPDIVp, which may lead to some
insignificant p-values. Since all the obtained OR values are 6= 1, we reject H01.
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Table 7: Contingency Tables for Evolutionary Patterns and Changes

Pattern Change Faulty NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Yes 2,002 1,343 6,491 219 4,471 7,976 6,051 189
INCp INCc No 1,585 1,926 19,638 231 2,137 12,297 13,926 210

INCp RESY NCc
Yes 44 7 4 4 93 15 3 8
No 400 54 4 5 85 88 12 2

SY NCp DIVc
Yes 1,071 642 239 66 1,701 430 180 56
No 825 1,373 133 75 635 1,535 101 55

SY NCp CONc
Yes 4,292 628 13 181 2,434 381 12 70
No 7,217 5,657 100 159 991 3,138 72 46

DIVp INCc
Yes 2,137 4,261 459 84 3,899 4,210 272 99
No 1,138 5,409 1,259 122 1,621 6,241 667 105

DIVp RESY NCc
Yes 66 13 1 3 199 4 1 2
No 192 72 1 0 91 54 4 7

LPDIVp INCc
Yes 166 270 5 7 475 270 3 17
No 110 425 24 7 243 278 21 6

LPDIVp RESY NCc
Yes 21 1 0 0 32 0 1 7
No 13 6 1 0 23 12 2 2

LPp DIVc
Yes 91 29 1 2 242 36 2 7
No 28 59 7 5 90 57 9 4

LPp CONc
Yes 669 12 0 3 320 21 2 1
No 261 96 3 7 110 100 7 1

Table 8: Statistical Analyses for Evolutionary Patterns and Changes

Pattern Change Test NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

INCp INCc O-R 1 1 1 1 1 1 1 1

INCp RESY NCc
O-R 0.09 0.19 3.03 0.84 0.52 0.26 0.58 4.44
p-value <0.01 <0.01 1 1 <0.01 <0.01 1 0.49

SY NCp DIVc
O-R 1.03 0.67 5.44 0.93 1.28 0.43 4.10 1.13
p-value 1 <0.01 <0.01 1 <0.01 <0.01 <0.01 1

SY NCp CONc
O-R 0.44 0.16 0.39 1.20 1.17 0.19 0.38 1.69
p-value <0.01 <0.01 <0.01 1 <0.01 <0.01 0.01 0.14

DIVp INCc
O-R 1.49 1.13 1.10 0.73 1.15 1.04 0.94 1.05
p-value <0.01 0.03 0.76 0.57 <0.01 1 1 1

DIVp RESY NCc
O-R 0.27 0.26 3.03 inf 1.05 0.11 0.58 0.32
p-value <0.01 <0.01 1 1 1 <0.01 1 1

LPDIVp INCc
O-R 1.19 0.91 0.63 1.05 0.93 1.50 0.33 3.15
p-value 1 1 1 1 1 <0.01 0.66 0.15

LPDIVp RESY NCc
O-R 1.28 0.24 0 na 0.67 0 1.15 3.89
p-value 1 1 1 1 1 0.04 1 0.85

LPp DIVc
O-R 2.57 0.70 0.43 0.42 1.29 0.97 0.51 1.94
p-value <0.01 1 1 1 0.42 1 1 1

LPp CONc
O-R 2.03 0.18 0 0.45 1.39 0.32 0.66 1.11
p-value <0.01 <0.01 1 1 0.03 <0.01 1 1

Clone pairs exhibiting inconsistent, divergent, late propagation, and late
propagation with diversion patterns are more likely to experience a fault
than clone pairs that are maintained consistently (i.e., all the changes are
propagated on time consistently) throughout their evolution history.

Faults vs. Changes: The results of the odds ratio and Fisher’s exact test
are summarized in Table 6. For each type of change, we show the obtained
odds ratios and p-values.

For all studied system (with the exception of RESY NCc detected by
NiCad for ArgoUML), when the p-value is less than 0.05 (i.e., the difference
is statistically significant), the OR values of DIVc, INCc, and RESY NCc

are greater than 1; meaning that all of the changes are more fault-prone than
consistent changes (CONc). These results are expected, because clone pairs
experiencing inconsistent changes are difficult to monitor using clone detection
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tools and are more likely to cause bugs. For Maven, none of the results is sta-
tistically significant (all adjusted p-values are > 0.05). Hence, we cannot reject
H02. We explain this outcome by the low number of DIVc, INCc, RESY NCc

changes performed in Maven, compared to other systems.

We conclude that in general, any other changes are more fault-prone
than CONc changes. Developers should be careful when breaking a clone-
relationship between a pair of code fragments.

Faults vs. Evolutionary Patterns and Changes: The results of the
odds ratio and Fisher’s exact test are summarized in Table 8. For each combi-
nation of clone evolutionary pattern and type of change, we show the obtained
odds ratios and p-values.

Using the NiCad clone detection tool, we obtained the following results:
In ArgoUML, Ant, and JEdit, a consistent change on a clone pair that follows
the SY NCp pattern is less likely to introduce a fault than an inconsistent
change on a clone pair that follows the INCp pattern. This result is statistically
significant (adjusted p-value < 0.01).
In ArgoUML and Ant, a re-synchronizing change on a clone pair that follows
the INCp pattern or follows the DIVp pattern is less likely to introduce a fault
than an inconsistent change on a clone pair that follows the INCp pattern.
This result is statistically significant (adjusted p-value < 0.01).
In Ant, an inconsistent change on a clone pair that follows the DIVp pattern
is more likely to introduce a fault than an inconsistent change on a clone pair
that follows the INCp pattern. This result is statistically significant (adjusted
p-value < 0.01).
In ArgoUML, an inconsistent change on a clone pair that follows the DIVp
pattern, a re-synchronizing change that follows the late propagation patten,
as well as a consistent change that follows the late propagation pattern are
more likely to introduce a fault than an inconsistent change on a clone pair
that follows the INCp pattern. This result is statistically significant (adjusted
p-value < 0.01).

Using the iClones clone detection tool, we obtained the following results:
In Ant and JEdit, a consistent change on a clone pair that follows the SY NCp

pattern is less likely to introduce a fault than an inconsistent change on a clone
pair that follows the INCp pattern. This result is statistically significant (ad-
justed p-value < 0.01).
In ArgoUML and Ant, a re-synchronizing change on a clone pair that follows
the INCp pattern is less likely to introduce a fault than an inconsistent change
on a clone pair that follows the INCp pattern. This result is statistically sig-
nificant (adjusted p-value < 0.01).
In ArgoUML and JEdit, a diverging change on a clone pair that follows the
SY NCp pattern is more likely to introduce a fault than an inconsistent change
on a clone pair that follows the INCp pattern. This result is statistically sig-
nificant (adjusted p-value < 0.01).
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In ArgoUML, a consistent change following the SY NCp pattern, an inconsis-
tent change following the DIVp, as well as a consistent change following the
LPp pattern are more likely to introduce a fault than an inconsistent change
on a clone pair that follows the INCp pattern. This result is statistically sig-
nificant (adjusted p-value < 0.05).
In Ant, an inconsistent change on a clone pair that follows the LPDIVp pat-
tern is more likely to introduce a fault than an inconsistent change on a clone
pair that follows the INCp pattern. In addition, a diverging change following
the SY NCp, a re-synchronizing change following the DIVp or the LPDIVp,
as well as a consistent change following the LPp pattern are less likely to in-
troduce a fault than an inconsistent change following the INCp pattern. This
result is statistically significant (adjusted p-value < 0.05).
In the case of Maven, there is no statistically significant result. Hence, we
cannot reject H03.

Overall, these results suggest that developers should be careful when per-
forming an inconsistent change on a clone pair that experienced a DIVp
pattern. Also, a diverging change on a clone pair that consistently followed
the SY NCp pattern in the past can be fault-prone.

5.2 RQ2: Does the size of a clone or the time interval between changes affect
the fault-proneness of a clone pair?

Motivation In this question we examine the effect of two metrics on fault
proneness: the time interval since the last change and the size of the clone.
We examine the time interval because it is believed that a long time interval
between changes will lead a developer to become unfamiliar with the code,
causing an increase in the number of faults. It is also expected that a smaller
clone will be less prone to faults, as it is less complex and may require less
effort to modify. Using our set of clone pair genealogies, we examine whether
the time interval between changes or the size of the clone relates to faults. An
evolutionary history of a clone pair tracks the types and frequency of changes
to clone pairs. By examining the evolutionary history of clone pairs, we can
determine whether fault-proneness is affected by either of these two metrics.

Approach In this question, we classify each change by the time interval since
the last change. We divide the changes into five time periods: one day, one
week, one month, one year, and more than one year. We performed this dis-
cretization because the Fisher test requires categorical variables. A change is
flagged if it is fault-inducing. Using “One Day” as the control group, we cal-
culate the odds ratios between the control group and each of the other time
period and perform the Fisher’s exact test. We test the following null hy-
pothesis H04: The time interval between modifications to a clone pair has no
relationship with faults.
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Table 9: Contingency Tables for Evolutionary Patterns Considering the Time
Interval between Changes

Interval Faulty NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Yes 1,140 700 4,900 93 1,559 1,244 5,240 91One day No 1,177 6,481 9,785 140 825 8,192 5,659 136

One week Yes 1,353 975 679 118 2,054 1,978 412 118
No 1,689 3,258 2,474 119 1,292 5,497 1,426 151

One month Yes 1,887 1,233 564 131 3,148 2,396 378 121
No 2,423 4,357 3,143 158 1,675 7,265 1,734 126

One year Yes 9,665 3,698 1,921 314 9,208 6,492 2,270 206
No 15,057 3,377 8,208 343 4,385 5,764 7,070 210

More than Yes 1,555 1,318 1,322 184 2,089 2,137 1,313 124
one year No 3,434 2,344 2,235 235 1,289 3,264 2,298 60

When examining the effect of clone size on faults, we examine each state
from each genealogy graph G. For each state, we identify the evolutionary
pattern of the clone pair and measure the number of lines of cloned code in a
clone pair. The size of the clone is then labeled as either “big” if it is greater
than or equal to the median lines of clone of a studied system detected by the
tool, or “small” if it is smaller than the median lines of clone of the system
detected by the tool. For each state, we use the SZZ algorithm to determine
whether it is faulty or not. We calculated the odds ratios and the p-value of
the Fisher’s exact test, and test the following null hypothesis H05: The size
of the clone has no relationship with faults. When calculating the odds ratio,
we select the synchronous evolutionary pattern with a small clone size as our
control group. Since a large size is known to be correlated with a high risk of
fault, we expect the synchronous evolutionary pattern with a small clone size
to be less fault-prone than the other patterns, hence our choice of this pattern
as our control group.

To better understand the correlational relationship between bug-proneness
and time interval (respectively clone size), we build a linear regression model
for each studied system. The linear regression models have the following form:

Faulty = αInterval + βSize+ γ (1)

We leverage R to create the GLM models, in which, time interval and clone
size are independent variables, and whether a clone is faulty is the dependent
variable. We will compare the explanatory power of time interval and clone
size with other metrics in RQ3.

Results In this subsection we summarize our results when investigating the
relationship between the time interval between changes or the size of the clone
and faults. For each time interval and evolutionary pattern considering cloned
code size, we provide the number of faulty and clean occurrences in Table 9
and Table 11.
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Table 10: Statistical Analyses for Evolutionary Patterns Considering the Time
Interval between Changes

Interval Test NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

One day O-R 1 1 1 1 1 1 1 1

One week O-R 0.83 2.77 0.55 1.49 0.84 2.37 0.31 1.17
p-value <0.01 <0.01 <0.01 0.13 <0.01 <0.01 <0.01 1

One month O-R 0.80 2.62 0.36 1.25 0.99 2.17 0.24 1.44
p-value <0.01 <0.01 <0.01 0.99 1 <0.01 <0.01 0.21

One year O-R 0.66 10.14 0.47 1.38 1.11 7.42 0.35 1.47
p-value <0.01 <0.01 <0.01 0.16 0.10 <0.01 <0.01 0.10

More than O-R 0.47 5.21 1.18 1.18 0.86 4.31 0.62 3.09
one year p-value <0.01 <0.01 <0.01 1 0.02 <0.01 <0.01 <0.01

Table 11: Contingency Tables for Evolutionary Patterns Considering the
Cloned Code Sizes

Faulty NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

Yes 40 82 2 3 428 107 1 5
SY NCp Small No 4,582 955 37 65 391 711 41 23

DIVp Small Yes 86 174 95 11 852 281 14 11
No 152 606 28 40 213 659 69 38

INCp Small Yes 53 114 1,630 35 1,033 309 770 39
No 1,369 582 1,296 120 545 1,371 1,994 95

LPDIVp Small Yes 11 13 3 2 171 13 1 4
No 4 11 0 0 15 32 3 4

LPp Small Yes 0 7 0 0 31 19 2 1
No 209 23 0 0 20 25 0 2

SY NCp Big Yes 474 109 3 16 281 71 2 10
No 5,470 1,149 97 81 525 756 74 31

DIVp Big Yes 750 235 92 33 656 183 66 27
No 650 915 155 54 325 784 127 26

INCp Big Yes 664 77 2,218 52 1,021 255 1,513 43
No 1,560 314 1,185 33 894 1,438 1,761 82

LPDIVp Big Yes 59 17 3 2 102 13 1 2
No 45 47 2 3 44 35 6 1

LPp Big Yes 19 14 1 2 31 9 2 5
No 355 14 1 3 54 15 5 0

Faults and Time Interval Between Changes: Table 10 summarizes
the results of the Odds ratio and Fisher tests. We obtained the following result
with NiCad: For ArgoUML, changes occurring after one week are always less
fault-prone than changes performed within a day. For Ant, on the contrary, any
changes occurring after one week are always more fault-prone than changes
performed within a day. For JEdit, changes occurring after one week and
less than one year are less fault-prone than changes performed within a day;
while changes occurring after a year become more fault-prone than changes
performed within a day. Regarding Maven, none of the results is statistically
significant.

But when we look at the results obtained with iClones, we see that for
ArgoUML, changes occurring after one week but within one month, as well as
changes occurring after more than one year are less fault-prone than changes
performed within a day. For Ant, we obtained the same results as those of
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Table 12: Statistical Analyses for Evolutionary Patterns Considering the
Cloned Code Sizes

Test NiCad iClones
ArgoUML Ant JEdit Maven ArgoUML Ant JEdit Maven

SY NCp Small O-R 1 1 1 1 1 1 1 1

DIVp Small O-R 64.81 3.34 62.77 5.96 3.65 2.83 8.32 1.33
p-value <0.01 <0.01 <0.01 0.07 <0.01 <0.01 0.17 1

INCp Small O-R 4.43 2.28 23.27 6.32 1.73 1.50 15.83 1.89
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1

LPDIVp Small O-R 315.01 13.76 inf inf 10.41 2.70 13.76 4.60
p-value <0.01 <0.01 <0.01 0.04 <0.01 0.06 1 0.78

LPp Small O-R 0 3.54 na na 1.42 5.05 inf 2.30
p-value 1 0.08 1 1 1 <0.01 0.03 1

SY NCp Big O-R 9.93 1.10 0.57 4.28 0.49 0.62 1.11 1.48
p-value <0.01 1 1 0.21 <0.01 0.04 1 1

DIVp Big O-R 132.17 2.99 10.98 13.24 1.84 1.55 21.31 4.78
p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.04

INCp Big O-R 48.76 2.86 34.63 8.47 1.04 1.18 35.23 2.41
p-value <0.01 <0.01 <0.01 <0.01 1 1 <0.01 1

LPDIVp Big O-R 150.19 4.21 27.75 14.44 2.12 2.47 6.83 9.20
p-value <0.01 <0.01 0.06 0.31 <0.01 0.14 1 1

LPp Big O-R 6.13 11.65 18.50 14.44 0.52 3.99 16.40 inf
p-value <0.01 <0.01 1 0.31 0.06 0.03 0.45 <0.01

Table 13: Coefficients and p-values of the linear regression model on the rela-
tionship between fault-proneness and time interval of changes as well as cloned
code size.

System Interval p-value Size p-value

NiCad

ArgoUML -0.0009 <0.0001 0.022 <0.0001
Ant 0.0002 <0.0001 0.0026 <0.0001
JEdit 0.0004 <0.0001 0.0026 <0.0001
Maven -0.0001 0.43 -0.0018 0.26

iClones

ArgoUML -0.0004 <0.0001 -0.010 <0.0001
Ant 0.0002 <0.0001 0.0024 <0.0001
JEdit -0.0002 <0.0001 -0.049 <0.0001
Maven 0.0009 <0.0001 -0.0051 0.047

NiCad. For JEdit, changes occurring after one week are always less fault-prone
than changes performed within a day. For Maven, changes occurring after one
year are more fault-prone than changes performed within a day.

Table 13 shows the coefficients and p-values in the linear regression model
that investigates how time interval of changes and size impact the fault-
proneness. Figures 7 and 8 depict the trends of the fault-proneness proba-
bility changes, with respect to the time interval. Based on the results of both
clone detection tools, the probability of fault-proneness increases with the in-
crease of the time interval for Ant; while the probability decreases with the
increase of the time interval for ArgoUML. For JEdit and Maven, the trends
diverge depending on different clone detection tools. Some of the results seem
inconsistent with the those from Table 10 because time interval and size can
interfere with each other in the regression model. In the future, we plan to
build non-linear regression models [43] to explore whether the models contain
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Fig. 7: Estimated fault-proneness probability for various time interval sizes (in
days) based on NiCad’s detection
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Fig. 8: Estimated fault-proneness probability for various time interval sizes (in
days) based on iClones’ detection

any knot that changes the direction of the trends. This kind of model can
better reflect trends obtained for JEdit results based on NiCad’s detection in
Table 10. In summary, the results are system dependent, so we cannot reject
H04 in general.
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Faults and Size of Clone: The odds ratios of the evolutionary patterns
classified by the size of the clone are summarized in Table 12.

Consistent with our findings from RQ1, most patterns involved with in-
consistent change are more fault-prone than SY NCp small, except SY NCp

big for ArgoUML and Ant based on iClones’ detection. This exception may
be due to the relatively small time interval observed between the big changes,
which can also explain the trend of ArgoUML in Figure 8. Once again, the
time interval and size factors may interfere with each other. From the results
of Table 12, we can reject H05.

Table 13 shows the coefficients and p-values in the linear regression model
that investigates how cloned code sizes affect fault-proneness. Figures 9 and
10 depict the trends of the fault-proneness probability changes with respect to
the size of the clones. Based on the results of both clone detection tools, the
probability of fault-proneness increases with the increase of the cloned size for
Ant; while the probability decreases with the increase of the cloned size for
JEdit. For ArgoUML and Maven, the trends diverge depending on different
clone detection tools.

Overall, we conclude that in general, the time interval between changes to
a clone pair does not seem to affect the fault-proneness of the clone pair;
while bigger clone size tend to increase the probability of fault-proneness.
We did not observed a uniform trend of changes in fault-proneness among
the systems, as the time interval or cloned code sizes changed.

5.3 RQ3: Can we predict faults in software clones using clone genealogy
information?

Motivation Tracking the genealogy of all clone pairs in an entire system is
resource intensive. When building prediction models to identify faulty code
clones, developers face a tradeoff between relying on only traditional fault
prediction metrics or collecting additional genealogy metrics which provide
richer information on the history of a clone pair. Knowing the gain achieved
by adding genealogy metrics to fault explanatory models is important to help
developers decide whether the added effort justifies the results.

Approach In this question, we propose metrics to capture the genealogy in-
formation of a clone pair. We combine these metrics with traditional product
and process metrics and investigate their statistical relationships with future
faults in cloned code. Table 14 presents the description of all the metrics used
in this study. The metrics are divided into three categories: product metrics,
process metrics and genealogy metrics. Product metrics can be collected us-
ing the snapshot of the system that contains the clone pair. For example,
“CPathDepth” describes the number of folders that the clones in a clone pair
have in common within the system directory structure. Process metrics are
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Table 14: Clone Pair Metrics

Metrics Description

Product metrics
CLOC The number of cloned lines of code.
CFltF ix The current commit was a fault fix (true or false).
CPathDepth The number of common folders within the project directory structure.
CCurSt The current state of the clone pair (consistent or inconsistent).
CommitterExp The experience of a committer (i.e., the number previous commits

submitted before a specific commit).
Process metrics

EFltDens The number of fault fix modifications to the clone pair since it was
created divided by the total number of commits that modified the
clone pair.

TChurn The sum of the added and changed lines of code in the history of a
clone.

TPC The total number of changes in the history of a clone.
NumOfBursts The number of change bursts on a clone. A change burst is a sequence

of consecutive changes with a maximum distance of one day between
the changes.

SLBurst The number of consecutive changes in the last change burst on a clone.
CFltRate The number of fault-prone modifications to the clone pair divided by

the total number of commits that modified the clone pair.
Genealogy metrics

EEvPattern One of SY NCp, DIVp, INCp, LPp, or LPDIVp.
EConChg The number of consistent changes experienced by the clone pair.
EIncChg The number of inconsistent changes experienced by the clone pair.
EConStChg The number of consistent change of state within the clone pair geneal-

ogy.
EIncStChg The number of inconsistent change of state within the clone pair ge-

nealogy.
EFltsConStChg The number of re-synchronizing changes (i.e., RESY NCc) that were

a fault fix.
EFltIncStChg The number of diverging changes (i.e., DIVc) that were a fault fix.
EChgTimeInt The time interval in days since the previous change to the clone pair.

collected using the history of changes on clone pairs. For example, “TPC” mea-
sures the total number of changes in the history of a clone. Genealogy metrics
capture state changes in the history of clone pairs. For example, “EConStChg”
measures the number of consistent changes of states within a clone pair ge-
nealogy.

For each state in a clone genealogy instance, we collect all the metrics from
Table 14. Since each clone in the clone pair will have its own set of metrics
(e.g., MLOC), we compute the maximum value of each metric across the two
clones. To reduce the skewness observed on metric values, we apply a standard
log transformation to each metric. From the measurements obtained, we create
linear regression models that set the number of reported faults in relation to
our three groups of metrics. The linear regression models have the following
form:

Faults =
∑
i

αiProductMi +
∑
j

βjProcessMj
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+
∑
k

γkGenealogyMk + δ (2)

With this model, we investigate the statistical relationships between prod-
uct, process and genealogy metrics, which are represented by the regression
variables (ProductMi, ProcessMj , and GenealogyMk), and the number of
reported faults, represented by the dependent variable of the model (Faults).
We follow the same methodology as in the work of Cataldo et al. [44]. First,
we compute the variance inflation factors (VIF) [45] of each metric to exam-
ine multi-collinearity between the variables of our regression model. Next, we
construct Generalized Linear Models to investigate the relative impact of each
of our three groups of metrics on future faults. We remove from the models
all variables with VIF > 5, as recommended by [46].

We create the models following a hierarchical modelling approach: we start
out with a baseline model that contains only product metrics as regression vari-
ables. We then build subsequent models by adding step by step, respectively,
process metrics and clone genealogy metrics. We chose to follow a hierarchical
modelling approach because contrary to a step-wise modelling approach, the
hierarchical approach has the advantage of minimizing the artificial inflation
of errors and therefore the overfitting [44].

We report for each statistical model the explanatory power, deviance, of
the model and the percentage of deviance explained. The deviance of a model
M is defined as D(M) = −2.LL(M), where LL(M) is the log-likelihood of the
modelM . The deviance explained is the ratio between D(Faults ∼ Intercept)
and D(M). For each subsequent model MS+E derived from a model MS , we
also test the statistical significance of the difference between MS+E and MS .
For each explantory metric, we report its corresponding p-values. We use the
varImp package in R to calculate the importance of the metrics, and report the
top 3 metrics, which have the strongest explanatory power.

Results In this subsection we describe the results for RQ3. Table 15 and
Table 16 presents the results of our hierarchical analysis. In these tables, MS

represents a model built using product metrics only (i.e., the basic model).
MS+E is a model built using product and process metrics, while MS+E+G is a
model containing product, process and genealogy metrics. The results of Table
15 and Table 16 show that genealogy metrics only slightly contribute to the
explanatory power of the fault-proneness models. The biggest improvement is
obtained on Maven (i.e., 2.1%) thanks to the EchgTimeInt metric.

On average, the explanatory power of a fault prediction model built using
both product and process metrics (i.e., MS+E) is increased by 4.3% when
genealogy information is added to the model. This increase is statistically
significant. The increase is the highest for Ant when the iClones detection tool
is used (i.e., 8.5%).
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Results from Table 15 and Table 16 suggest that CFltRate would a be a good
predictor; meaning that the number of previous fault-prone modifications
can help predict future faults. This result is consistent with the findings of
our previous work [47]. We recommend that practitioners use this metric in
combination with traditional product and process metrics when predicting
faults in software clones.

6 Discussion

Our identification of clone genealogies are based on a line mapping algorithm,
which may not be 100% accurate. To examine the accuracy of our results,
we manually examined 50 commits that generated more than 10 new clone
genealogies. We found that all of these commits involved with a large amount
of new classes or reconstructions. Examining these genealogies helped us to
better understand why there are a large number of clone genealogies detected
in some systems, such as ArgoUML, and helped us validate our clone detection
scripts. For example, in ArgoUML, based on iClones’ detection, 230 different
clone genealogies started from the commit 559aca3 (SVN revision 122992), be-
cause there are 1,818 new files created in this commit. Another example is, in
Ant, based on NiCad’s detection, 3,257 different clone genealogies start from
the commit d1064de, because there are 1,903 new Java classes created in this
commit. In our manual validation, we also examined whether a clone geneal-
ogy was introduced from the first commit in the genealogy, and whether it
disappeared after the last commit in the genealogy. For example, the zipFile

method was introduced in respectively two classes (proposal/myrmidon/src/main/
org/apache/tools/ant/taskdefs/Ear.java and proposal/sandbox/antlib/src/main/org/

apache/tools/ant/taskdefs/Antjar.java) in Ant commit d1064de. The two methods
were very similar at the beginning. They experienced three consistent changes
(b8c5034, 7c0bc50C, and 669a7ea). However, at the commit 0a07be8, the second file
changed the algorithm of the method zipFile, i.e., the clone pair became in-
consistent. Finally, the second file was removed from the system at the commit
99cdb67. Another example is, in ArgoUML, the buildConnection method which
was introduced at commit a6a72d7 (SVN revision 11634) in respectively two
new files src/model-euml/src/org/argouml/model/euml/UmlFactoryEUMLImpl.java and
src/model-mdr/src/org/argouml/model/mdr/UmlFactoryMDRImpl.java. The two meth-
ods were identical at the beginning. They experienced consistent changes at
commits 1eb1d05(revision 11993) and 964f121 (revision 11994). But since the com-
mit 4e6285c (revision 12105), the first file changed its exception handling state-
ments. The clone pair became dissimilar until the last studied commit.

We expected that INC pattern would be the most fault-prone However,
according to the results, DIV pattern is highly fault-prone, because a fault
could be fixed by propagating changes performed on one clone segment to
the other segments. Here are two examples that we manually examined in
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Ant. In Bug 41353, running tasks in parallel generated a problem. The so-
lution to the fault was to clone the properties in data which was accessed
in parallel, which resulted in an inconsistent change on the clone contained
in files src/main/org/apache/tools/ant/PropertyHelper.java @ 472:480 and proposal/

embed/src/java/org/apache/tools/ant/PropertyHelper.java @ 501:513. As a result of
this, the clone pair evolved into a DIVp genealogy pattern. In the case of
Bug 42736, in order to encapsulate the reference to a method inside the dele-
gate object, the clone has created an interface with add method add(...) and
getDelegates and getDelegateInterfaces invoked methods to retrieve a collection
of delegates of the specified type. This modification resulted into the two clone
segments diverging, resulting into an INCp genealogy pattern.

An interesting phenomenon is the migration of clones across repositories.
Among the genealogies that were analyzed, we observe that faults occur more
frequently among clones from files located in different directories. And to fix
these faults, developers often propagate changes from one clone segment to
the other. This was the case for example for Ant’s bugs 19897, 22326, and
7552. A closer look at the files involved in these clones reveal that developers
duplicated code to experiment on new changes. However instead of doing this
in separate branches, they performed it in the main code base and committed
their experimentations in the trunk, whenever they were satisfied with their
experimentations, the modifications are propagated to the main files of Ant
that would be released to the public. We found that this phenomenon explains
a large proportion of the fault fix observed on the DIV genealogies.

7 Threats to Validity

In this section we discuss the threats to validity of our study.
Construct validity threats involve the relationship between theory and ob-

servation. The source of threats in this study are due to measurement errors
experienced by the clone detection tools. To reduce the number of false posi-
tive clone detection results, we repeat the study using two clone detection tools
that use different clone detection techniques and that have both been used in
previous studies and reported to achieve good precision and recall (see [12]).

In this study, we have chosen to analyze clone pairs instead of clone groups
since clone pairs within the same clone group are not equally risky. However,
all analysis presented in this paper can be replicated on clone groups easily.

The SZZ heuristic used to identify fault-inducing changes is not 100% accu-
rate. However, it has been successfully used in multiple previous studies from
the literature, with satisfying results. In our implementation, we remove all
fault-inducing commit candidates that only changed blank lines or comment
lines.

Threats to internal validity do not affect this study, as it is an exploratory
study [48]. We cannot claim causation, we simply report observations and
correlations, although our discussion tries to explain these observations.
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Threats to conclusion validity address the relationship between the treat-
ment and the outcome. We are careful to acknowledge the assumptions of each
statistical test. We used non-parametric tests that do not require making as-
sumptions about the data set distribution. To exclude test files from our study,
we manually examined all files in our data set.

Threats External validity address the generalizability of our results. We
examine four different sized systems from four different domains. Nevertheless,
more studies on more systems should be done to further validate our results.
All of our subject systems are written in Java. Our results may not be able to
generalized to systems with other programming languages. However, Java, C,
and C++ all belong to the “C-family programming languages” [49], i.e., they
share some common features in syntax. We believe that our approach can
yield similar results on C/C++ systems. In the future, we plan to extend this
study on more programming language, such as C and C++. We also welcome
software practitioners and researchers to replicate and validate our work on
other programming languages.

Threats to reliability validity take into account the possibly of replicating
our study. In this paper, we provide all the details needed to replicate our
study. All our four subject systems are publicly available for study. The data
and scripts used in this study is also publicly available and can be downloaded
here1.

8 Conclusion

In this paper, we examine the states within clone genealogies and changes to
clone pairs to determine their relationship with faults in software systems.
We formally define six different clone evolutionary patterns and four types of
changes experienced by a clone pair. Using these definitions, we show that
clone pairs exhibiting inconsistent and divergent patterns are more likely to
experience a fault than clone pairs that are maintained consistently. We also
show that the size of the cloned region of a clone pair can impact the fault-
proneness of the clone pair. But, there is no clear relationship between the
cloned code changed time and the fault-proneness of a clone pair. Next, we
investigate the statistical relationships between product, process, genealogy
metrics, and the number of future faults in cloned code. Our results show that
adding genealogy information to a fault prediction model built using product
and process metrics can increase the explanatory power of the model. We found
that clone pairs causing faults in the past can help indicate future faults in
the clone fragments. In the future, we intend to explore more factors that
can be correlated with fault-proneness of code clones, such as the number of
different maintainers, and the domain of the system. We also plan to replicate
our study on more systems using different clone detection tools. Moreover, we
will use the results of our study to build recommendation systems to assist

1 https://github.com/swatlab/clone_genealogies
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maintenance teams in the management of software clones. The data used in
this study is publicly available and can be found at: https://github.com/swatlab/
clone_genealogies.
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