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Abstract—Bug triaging is the process that consists in screening
and prioritising bugs to allow a software organisation to focus its
limited resources on bugs with high impact on software quality. In
a previous work, we proposed an entropy-based crash triaging
approach that can help software organisations identify crash-
types that affect a large user base with high frequency. We refer to
bugs associated to these crash-types as highly-impactful bugs. The
proposed triaging approach can identify highly-impactful bugs
only after they have led to crashes in the field for a certain period
of time. Therefore, to reduce the impact of highly-impactful bugs
on user perceived quality, an early identification of these bugs is
necessary. In this paper, we examine the characteristics of highly-
impactful bugs in Mozilla Firefox and Fennec for Android, and
propose statistical models to help software organisations predict
them early on before they impact a large population of users.
Results show that our proposed prediction models can achieve a
precision up to 64.2% (in Firefox) and a recall up to 98.3% (in
Fennec). We also evaluate the benefits of our proposed models
and found that, on average, they could help reduce 23.0% of
Firefox’ crashes and 13.4% of Fennec’s crashes, while reducing
28.6% of impacted machine profiles for Firefox and 49.4% for
Fennec. Software organisations could use our prediction models
to catch highly-impactful bugs early during the triaging process,
preventing them from impacting a larger user base.

Index Terms—Bug triaging, entropy analysis, crash report,
prediction model, mining software repositories.

I. INTRODUCTION

Today, many software organisations (e.g., Microsoft,

Mozilla) embed automatic crash reporting tools in their soft-

ware systems. Whenever the software crashes (i.e., terminates

unexpectedly in the user environment), the automatic crash

reporting tool collects information about the crash and sends

a detailed crash report to the software vendor. A crash report

usually contains a signature, the stack trace of the failing

thread, runtime information, such as the crash time, and

information about the user environment, e.g., the operating

system, the version, and the install age. Crashes with the same

signature are grouped together and filed in the same bug report.

Software quality managers and developers usually judge the

priority and severity of a bug by looking at the frequency of

its related crashes [14].

Indeed, crash frequency is an important factor to evaluate

the severity of a bug, because a high crashing frequency

represents a high number of crash occurrences. However,

the frequency alone does not show the full picture because

the crashes due to a bug may be concentrated on a limited

user group, while the crashes due to another bug may affect

most users of the software system. If the two bugs have the

same number of crash occurrences, the second bug should

be assigned a higher priority and severity because it impacts

a larger user base. Khomh et al. [13] have proposed an

entropy metric to capture the distribution of crash occurrences

among the users of a software system. They also proposed

an entropy-based crash triaging approach that assigns a high

priority to the bugs related to crashes that occur frequently

(i.e., high frequency) and affect a large user base (i.e., high

entropy). In this work, we refer to crash-related bugs with both

high crashing frequency and entropy as highly-impactful bugs.

Although the entropy-based crash triaging approach proposed

by Khomh et al. can successfully identify highly-impactful

bugs, it takes a certain period of time to assess which crashes

occur frequently with high entropy; a period during which the

users of the system are negatively impacted by the crashes.

In this paper, we investigate models to predict highly-

impactful bugs early on before the software is released. We

propose models that software organisations can use to identify

highly-impactful bugs at an early stage of development, e.g.,
during alpha or beta-testing phases. Such prediction models

allow software organisations to focus on highly-impactful

bugs earlier and improve the overall quality of their software

systems effectively. We analyse the crash reports of Firefox

and Fennec for Android (referred as Fennec in the rest of this

paper) during the period of January 2012 to December 2012

and answer the following research questions:

RQ1: What is the proportion of highly-impactful bugs?

We apply the algorithm proposed by Khomh et al. [13] to

identify users by their machines’ configuration, i.e., CPU

type, OS name, and OS version, and found that highly-

impactful bugs account for 42.3% of all bugs in Firefox,

and 37.9% in Fennec.

RQ2: Do highly-impactful bugs possess different charac-
teristics than other bugs?

We study whether highly-impactful bugs possess different

characteristics than other bugs (i.e., bugs with low entropy

and–or low frequency). Compared to other bugs, we ob-

served that highly-impactful bugs are often fixed by more

experienced developers and they generate larger amounts

of comments. However, the proportion of highly-impactful

bugs that are fixed and resolved is smaller in comparison

to bugs with low entropy and–or low frequency.

RQ3: Can we predict highly-impactful bugs?
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We applied GLM, C5.0, ctree, randomForest, and cforest

algorithms to predict whether or not a bug will become

highly-impactful, i.e., it will have both a high crashing

frequency and a high entropy. Our predictive models can

achieve a precision up to 64.2% (in Firefox) and a recall

up to 98.3% (in Fennec). Software organisations can use

our prediction models in the early stage of their new

releases to identify and fix bugs before they become

highly-impactful.

RQ4: Which benefits can be achieved by predicting highly-
impactful bugs?

The identification and correction of highly-impactful bugs

at an early stage of development reduces the number of

users impacted by these bugs; resulting in an improvement

of the user perceived quality of the software system.

We calculate the date Dpf at which a highly-impactful

bug, which is successfully predicted or transferred from a

previous release, would be potentially fixed as follows. We

compute the median fixing duration Durationmed of fixed

bugs that were assigned with the highest priority in the

previous release and add it to the opening date (i.e., Do) of

the highly-impactful bug, i.e., Dpf = Do+Durationmed.

All the crashes that occurred after Dpf can be avoided if

developers fix the bug without delay. Results show that a

considerable amount of crash occurrences can be avoided

with our prediction models. For Firefox and Fennec, on

average, crash occurrences can be reduced by 23.0% and

13.4% respectively, and the number of unique machine

profiles that are impacted by crashes can be reduced by

28.6% and 49.4%, respectively.

The remainder of the paper is organised as follows. Sec-

tion II provides background information on Mozilla crash and

bug triaging systems. Section III explains the identification of

highly-impactful bugs. Section IV presents our data collection

and processing. Section V describes and discusses the results

of the four research questions. Section VI discusses threats

to the validity and Section VII summaries related work.

Section VIII concludes the paper.

II. MOZILLA CRASH AND BUG TRIAGING SYSTEMS

Mozilla ships software with a built-in automatic crash re-

porting tool, i.e., the Mozilla Crash Reporter. When a Mozilla

product crashes unexpectedly, the user receives a dialog box

from the Mozilla Crash Reporting tool that suggests to submit

the crash report to developers for improving the product’s

quality. A crash event and a detailed crash report are generated

and sent to the Socorro server [21]. The crash report provides

a stack trace for the failing thread and other information about

the user’s environment. A stack trace is an ordered set of

frames where each frame refers to a method signature and

provides a link to the corresponding source code. Socorro

collects crash reports from end users, assigns a unique ID to

each report and groups similar crash reports together by the

top method signatures of their stack trace. Such a group of

crash reports in which all the stack traces share a common

top frame is called a crash-type. The Socorro server is an

open-source project, and its data are also open. It provides a

rich web interface for software practitioners to analyse crash-

types. Developers can file bugs for crash-types with high crash

occurrences in Bugzilla. Multiple crash-types can be linked to

the same bug and multiple bugs can also be linked to the

same crash-type. In Soccoro, the list of bugs filed in Bugzilla

is provided for each crash report. The Socorro server and

Bugzilla are integrated, i.e., developers can directly navigate

to the linked bugs (in Bugzilla) from a crash-type summary

in Socorro. Developers use the information contained in crash

reports to debug and fix bugs.

III. IDENTIFICATION OF HIGHLY-IMPACTFUL BUGS

We identify highly-impactful bugs following the approach

proposed by Khomh et al. [13]. The approach is composed

of three parts. The first part consists in identifying the list

of unique user profiles that are impacted by each bug. The

second part is the computation of the entropy and frequency

of the bugs. The third part is the classification of bugs based

on entropy and frequency values. The following subsections

elaborate on each of these parts.

Part 1: Identification of Unique User Profiles Impacted by
Each Bug

Mozilla crash reports do not contain personal information to

identify users reporting the crashes for privacy reasons, but we

can identify user profiles with the following information from

crash reports:

- crash signature: top method signature of a crash. Crashes

with the same crash signature are grouped into one crash

type in Socorro [13].

- OS name: name of the operating system on which the

crash occurred.

- OS version: version of the operating system on which the

crash occurred.

- CPU type: family model of the CPU of the machine on

which the crash occurred.

- Bug list: list of bugs related to the crash.

For each crash report, we combine the contained users’

environment information (i.e., OS name, OS version, CPU

type) to build a vector of unique profiles where each profile

represents a unique machine configuration [1]. Identifying

unique machine configurations is important to compute the

entropy of a bug. We associate each unique profile with

the list of bugs for which crash reports contain information

corresponding to the profile. The detailed mapping algorithm

between bugs and machine profiles is described in our previous

work [1].

Part 2: Computation of the Entropy and Frequency of Bugs

We compute the entropy of a bug using the normalised

Shannon’s entropy [17] defined in Equation (1):

Hn(b) = −
n∑

i=1

pi × logn(pi) (1)
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Fig. 1: Overview of our approach to identify highly-impactful bugs and extract bug fixing metrics

where b is a bug; pi is the probability of a specific machine

profile i reporting the bug b (pi ≥ 0, and
∑n

i=1 pi = 1); and

n is the total number of unique machine profiles running the

software. For a bug b, where all the machine profiles have

the same probability of reporting b, the entropy is maximal

(i.e., 1). On the other hand, if a bug b is reported by only one

machine profile i, the entropy of b is minimal (i.e., 0). Bugs

with high entropy values are reported by more unique machine

profiles. Therefore, a high entropy value for a bug means that

the bug is experienced by a high percentage of users.
We compute the frequency of a bug b following Equa-

tion (2).

Fq(b) =
Ncr(b)

maxj∈B(Ncr(j))
(2)

where b is a bug; Ncr(j) is the number of crash reports linked

to the bug j, and B is the total number of bugs. We implement

the entropy and frequency computation algorithm in Python

and share the code in the following repository: https://github.

com/swatlab/highly-impactful.

Part 3 : Classification of Bugs Based on Entropy and Fre-
quency Values
Similar to Khomh et al [13], we use the median values of

entropy and frequency to classify bugs into the following four

categories:

• Highly-impactful Bugs: bugs with frequency and en-

tropy values above the median. These bugs impact a large

proportion of users.

• Skewed Bugs: bugs with a high frequency value (i.e.,
above the median) but a low entropy (i.e., below or equal

to the median). These bugs only seriously affect a small

proportion of users and are more likely to be specific to

the users’ systems.

• Moderately-impactful Bugs: bugs that are highly-

impactful among the users that report them (i.e., entropy

value above to the median) but do not occur very often

to the majority of users (i.e., frequency value below or

equal to the median).

• Isolated Bugs: bugs with frequency and entropy values

below or equal to the median. These bugs cause crashes

rarely and affect a small number of users.

IV. STUDY DESIGN

This section presents the data collection and data processing

of our case study, which aims to address the following four

research questions:

1) What is the proportion of highly-impactful bugs?

2) Do highly-impactful bugs possess different characteris-

tics than other bugs?

3) Can we predict highly-impactful bugs?

4) Which benefits can be achieved by predicting highly-

impactful bugs?

A. Data Collection
We mine crash reports to compute the frequency and entropy

of bugs as well as bug reports to study the characteristics

of highly-impactful bugs and to build predictive models. We

select the two following open-source software systems: Firefox
and Fennec for Android. Firefox is a popular web browser

developed by Mozilla. Fennec for Android is the codename of

Firefox for Android. We analyse crash reports in both systems

from January 2012 to December 2012 and the corresponding

bug reports. These crashes and bugs are extracted from copies

of Socorro and Bugzilla databases obtained from the Mozilla

corporation. Table I shows the numbers of crash reports,

extracted bugs reports, related releases, and detected users in

the two subject systems.

TABLE I: Numbers of crash reports, extracted bugs, related

releases, and detected users in the studied systems

System Crash reports Bug reports Releases* Machine profiles

Firefox 132,484,824 6,636 22 40,942

Fennec 6,239,077 2,565 8† 11,488

* We only count the number of official main releases, e.g., Firefox 10.0.1 and 10.0.2
are considered as minor releases of Firefox 10.
†Mozilla did not release Fennec 11, 12, and 13. The next release of Fennec 10.0 is
Fennec 14.0. We consider all minor releases of Fennec 11, 12, and 13 as Fennec 10.

B. Data Processing
Figure 1 shows a general view of our data processing ap-

proach. First, we mine crash reports to compute bug frequency

and entropy values. Then, we mine bug reports to analyse the

characteristics of highly-impactful bugs and build statistical

models for their prediction. The remainder of this section

elaborates more on these steps. All the data and scripts used in

this study are available at: https://github.com/swatlab/highly-

impactful.
1) Mining Crash Reports: We parse crash reports using a

Python script and extract the following information: crash sig-
nature, OS name, OS version, CPU type, bug list, and uptime.

We use uptime as a predictor to answer RQ3, while using

the rest of information to identify the list of unique machine

profiles that are associated to each bug (see Section III).
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2) Mining Bug Reports: Similar to crash reports, we parse

bug reports using a Python script and extract information about

bug opening date, bug fixing date, bug assigned date, reporter

name, assignee name, involved fixer name(s), bug title, bug

comments, and re-opened times. We also identify patches from

bugs’ attachments using the keyword “patch”, i.e., if the type

of an attachment is marked as “patch”, we consider it as a bug

fixing patch.

3) Computing Code Complexity Metrics: We localise the

faulty file(s) of each bug by analysing its crashing stack trace.

In most crash-related bug reports, the top crashing frames are

provided in the comments. We parse these crashing frames to

extract crashed files or crashed function signatures, which are

then mapped to the corresponding files in the source code of

a specific release on which the crashes occurred. Using the

SLOCCount tool [20], we found that, in both subject systems,

C and C++ code accounts for more than 90%. Hence, in this

study, we only take C and C++ files into account. We analyse

every detected main source code release of Firefox and Fennec

using the Understand tool [16], which generates its results into

an Understand database (UDB) and provides a Python API

for further analysis. We apply a Python script to extract five

code complexity metrics for each faulty file identified: lines

of code, average cyclomatic complexity, number of functions,

maximum nesting, and ratio of comment lines over code

lines. Detailed characteristics of these metrics are described

in Section V.

4) Social Networking Analysis Metrics: From the Under-

stand databases generated in Section IV-B3, we extract all

C and C++ files and combine each .c or .cpp file with its

corresponding .h file as a class node while merging their de-

pendencies. To represent the relationship among these nodes,

we build an adjacency matrix. Using this matrix and a Python

script based on the network analysis package, igraph [10],

we compute the following social networking analysis (SNA)

metrics for each class node: PageRank, betweenness, close-

ness, indegree, and outdegree (detailed characteristics of these

metrics are described in Section V). We map the SNA metric

values of each class node back to their corresponding bugs.

Bugs that do not contain stack trace or could not be mapped

to any file in the source code (e.g., only crashed memory

addresses are given in the stack trace [1]) are not mapped

to any SNA or complexity metric value.

V. CASE STUDY RESULTS

This section presents and discusses the results of our four

research questions. For each question, we present the motiva-

tion, the approach followed to answer the questions, and the

findings.

RQ1: What is the proportion of highly-impactful bugs?

Motivation. This question is preliminary to the other ques-

tions. It provides quantitative data on the proportion of highly-

impactful bugs in our subject systems. This result will clarify

the prevalence of highly-impactful bugs in Mozilla Firefox and

Fennec to help understand the importance of their identifica-

tion early on during the development process.

Approach. We identify highly-impactful bugs following the

approach described in Section III and compute their percentage

over the total number of reported bugs.
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Fig. 2: Distribution of bugs’ crashing entropy and frequency

in the subject systems

Findings. Figure 2 shows the distribution of entropy and

frequency values for all bugs in our subject systems. Table II

shows the detailed distribution of bugs in the four categories

presented in Section III.
�

�

�

�
Highly-impactful bugs account for respectively 42.3% and
37.9% of all crash related bugs in the two studied systems.

By focusing their maintenance effort on highly-impactful bugs,

software organisations will significantly improve the user

perceived quality of their software systems, i.e., it will reduce

the proportion of crash occurrences in the field.

TABLE II: Distribution of highly-impactful bugs, and other

bugs in the subject systems

System Highly Skewed Moderately Isolated

Firefox 2806 (42.3%) 510 (7.7%) 512 (7.7%) 2808 (42.3%)

Fennec 972 (37.9%) 302 (11.8%) 301 (11.7%) 990 (38.6%)

RQ2: Do highly-impactful bugs possess different characteris-
tics than other bugs?

Motivation. Highly-impactful bugs crash very frequently in

the field and impact a large proportion of users. Once such

bugs are discovered, developers must fix them as soon as

possible, to reduce their negative impact. Khomh et al. [13]

recommend assigning the highest priority to these bugs. How-

ever, to effectively fix highly-impactful bugs quickly and avoid

them being tossed several times, i.e., passed around from

one developer to another, it is important to assign them to

the right developers. Previous work [11] found that tossing

bugs results in longer bug fixing time. Highly-impactful bugs

also must be fixed completely, i.e., without any re-opening,

because re-opened bugs negatively impact software quality [2].

In this research question, we study the bug fix characteristics

of highly-impactful bugs, and compare them to non highly-

impactful bugs (i.e., all other remaining bugs).

Approach. To answer this research question, we first apply

the approach described in Section III to classify bugs from
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TABLE III: Metrics used to compare the characteristics of

highly-impactful bugs and other bugs

Metric Description and Rationale

Fixing time Duration (in seconds) of the period between the bug opening date
and the last modification date. We use the fixing time as a proxy
for fixing effort.

Triaging time Duration (in seconds) of the period between the bug opening date
and the first bug assignment date. Low triaging time may imply
an efficient work on bug classification.

Patch number Number of patches submitted to fix a bug. A high number of
patches means a high fixing effort (multiple attempts were made
to fix the bug).

Comment size Number of words in the comments contained in a bug report. A
high number of words would mean that an intensive discussion
took place.

Reporter expe-
rience

The number of bugs filed by the reporter of a bug in the past.
A reporter who filed a high number of bugs is likely to gain
recognition for the relevance of her bug reports. Quality managers
may decide to pay more or less attention to her reported bugs.

Assignee
experience

The number of bugs fixed by the bug assignee in the past.
Assignees with a high experience are likely to fix the bug quickly.

Fixer number The number of unique developer names in the bug fixing history.
A high number of fixers means that the bug was tossed around
or required the participation of multiple developers.

CC number Number of developers who were interested in the bug. These
developers may not have played a direct role in fixing the bug.
However, a high CC number indicates a high interest in a bug.

Re-opened fre-
quency

Number of time that a bug is re-opened. Frequent bug re-openings
increase development costs and decrease users’ satisfaction [18].

Closed
percentage

Percentage of bugs from a category (i.e., highly, skewed, moder-
ately, or isolated) whose final status is “resolved” or “verified”. A
high closed percentage for a category may suggest a prioritisation
of the bugs from the category.

our subject systems in four categories: Highly-impactful Bugs

(highly), Skewed Bugs (skewed), Moderately-impactful Bugs

(moderately), and Isolated Bugs (isolated). Next, for each

bug, we parse the corresponding bug report using a Python

script available at https://github.com/swatlab/highly-impactful,

and compute the metrics shown in Table III. Finally, we test

the following 10 null hypotheses to compare the bug fix

characteristics of highly-impactful bugs and bugs from the

other three categories.

Comparing the effort required to fix highly-impactful bugs
vs. other bugs.
H1

01: the fixing time is the same for highly-impactful bugs
and other bugs.
H2

01: the triaging time is the same for highly-impactful bugs
and other bugs.
H3

01: the number of patches is the same for highly-impactful
bugs and other bugs.
H4

01: the comment size is the same for highly-impactful bugs
and other bugs.
H5

01: the re-opened frequency is the same for highly-
impactful bugs and other bugs.
Comparing people involved in filing and fixing highly-
impactful bugs vs. other bugs
H1

02: reporters’ experience is the same for highly-impactful
bugs and other bugs.
H2

02: assignees’ experience is the same for highly-impactful
bugs and other bugs.
H3

02: the number of fixers is the same for highly-impactful
bugs and other bugs.

H4
02: the number of developers interested in highly-

impactful bugs is the same as other bugs.
Comparing the bug fix rate of highly-impactful bugs vs.
other bugs
H1

03: the percentage of highly-impactful bugs that are closed
is the same as other bugs.

We apply the Wilcoxon rank sum test [9] to accept or

reject the first 9 hypotheses. For H1
03, we compare the values

of closed percentage obtained for the four categories. The

Wilcoxon rank sum test is a non-parametric statistical test

used for assessing whether two independent distributions have

equally large values. We use this test to compare the character-

istics of highly-impactful bugs with other bugs. We also apply

the Kruskal-Wallis test [9] to compare the characteristics of

bugs from all the four categories (i.e., highly, skewed, moder-

ately, and isolated). The Kruskal-Wallis test is an extension of

the Wilcoxon rank sum test. It is used to assess whether two

or more samples originate from the same distribution. It does

not assume a normal distribution since it is a non-parametric

statistical test. For all statistical tests, we use a 95% confidence

level (i.e., p-value < 0.05) to decide whether to reject a null

hypothesis. As we are investigating 9 characteristics, we apply

the Bonferroni correction [7], which consists in dividing the

threshold p-value by the number of tests (i.e., we consider that

there is a statistically significant difference only if the p-value
< 0.05/9 = 0.0056 ).

Because highly-impactful bugs are defined using median

(i.e., 50th percentile) values of entropy and frequency (see

Section III). We perform a sensitivity analysis to assess the

impact of this chosen threshold on the results. Precisely, we

repeat the identification of highly-impactful bugs using the

70th, and 90th percentiles, and repeat testing the 10 null

hypotheses mentioned above.

Findings. Table IV shows the mean values of metrics de-

scribed in Table III, for highly-impactful bugs and bugs from

the other three categories (i.e., skewed, moderately, and iso-

lated), as well as the p-values for Wilcoxon and Kruskal-Wallis

tests. Statistically significant p-values are bolded in Table III.

On the one hand, the results of the Wilcoxon rank sum test

are statistically significant for comment size and reporter ex-

perience in both studied systems. Therefore we reject H4
01 and

H1
02. Although in general highly-impactful bugs have longer

comments and are reported by more experienced developers,

in Firefox, their comment size and developers’ experience are

lower than those of skewed bugs. On the other hand, there is

no statistically significant difference between highly-impactful

bugs and other bugs for the fixing time, triaging time and the

fixer number in both systems, hence we cannot reject H1
01,

H2
01 and H3

02. For H3
01, H5

01, H2
02, and H4

02 the results are

system dependant. We discuss them in detail in the following

paragraphs.

Statistically significant differences: In Firefox, the number

of patches proposed for highly-impactful bugs is significantly

lower than other bugs. The experience of developers assigned

to highly-impactful bugs and the number of developers indi-

rectly involved (i.e., CC number) in fixing highly-impactful

266266



TABLE IV: Mean value of characteristic metrics for highly-impactful bugs and other bugs, as well as the p-values of the

Wilcoxon and Kruskal-Wallis tests

Metric
Firefox Fennec

Highly Skewed Moderately Isolated Wilcoxon Kruskal. Highly Skewed Moderately Isolated Wilcoxon Kruskal.

Fixing time 1.22e+7 1.40e+7 1.52e+7 1.55e+7 0.126 0.031 8.87e+6 6.63e+6 8.34e+6 1.33e+7 0.41 0.042

Triaging time 4.51e+6 5.54e+6 7.37e+6 3.89e+6 0.212 0.028 3.12e+6 5.86e+6 1.36e+6 6.63e+6 0.197 0.34

Patch number 0.48 0.52 0.61 0.68 4.3e-14 <2.2e-16 0.59 0.43 0.80 0.68 0.066 2.0e-6

Comment size 595.0 728.3 451.9 421.2 <2.2e-16 <2.2e-16 585.7 538.2 484.3 428.6 7.4e-11 9.0e-11

Reopened freq. 0.063 0.061 0.065 0.069 0.645 0.858 0.122 0.08 0.070 0.066 9.7e-6 1.4e-4

Reporter exp. 202.0 224.5 123.8 109.8 <2.2e-16 <2.2e-16 152.3 149.1 97.8 97.0 1.7e-8 2.3e-13

Assignee exp. 959.8 1238.4 747.6 776.9 5.0e-15 <2.2e-16 341.7 459.4 276 284.1 0.036 4.8e-9

Fixer number 7.0 6.7 6.8 6.6 0.709 0.588 6.8 5.8 7.0 6.8 0.112 8.0e-4

CC number 6.7 6.5 6.1 5.7 1.6e-5 1.0e-5 6.5 6.0 6.4 6.2 0.174 0.25

Closed % 59.2% 55.1% 73.5% 73.9% – – 63.7% 53.3% 73.2% 74.8% – –

bugs are significantly higher than other bugs. In Fennec,

the bug re-opening frequency of highly-impactful bugs is

significantly higher than other bugs. In both systems, the

proportion of highly-impactful bugs that are closed is slightly

higher than the proportion of bugs from the skewed category,

but significantly lower than the proportion of bugs from

moderately-impactful and isolated categories that are closed.

This result suggests that Mozilla developers do not necessarily

prioritise highly-impactful bugs during bug fixing activities;

a finding consistent with previous result by Kim et al. [14],

that Mozilla developers judge the priority and severity of a

bug mostly by looking at the frequency of its related crashes.

The sensitivity analysis confirms these findings for highly-

impactful bugs detected using the 70th percentile. However,

if we identify highly-impactful bugs using the 90th percentile,

the differences between the reporter experience and assignee

experience of highly-impactful bugs and other bugs is not

statistically significant in Firefox. In Fennec, the difference

between the reporter experience of highly-impactful bugs and

other bugs is not statistically significant. We attribute this result

to the low number of highly-impactful bugs found in these

systems when using the 90th percentile (i.e., 4.2% in Firefox

and 3% in Fennec).

Non statistically significant differences: The results from

Table IV show lower fixing time values in Firefox for highly-

impactful bugs in comparison to other bugs. However, the

Wilcoxon test was not statistically significant. In our previous

work [13], we found that highly-impactful crash-types required

longer fixing time. However, a crash-type is often related

to more than one bug (and vice-versa), which could explain

the different result obtained here. Also, we rely on machine

profiles to identify highly-impactful bugs instead of user

profiles [1] as in our previous work [13]. This choice was

dictated by the fact that data provided to us by the Mozilla

corporation did not contained references to users (because

of privacy restrictions). The result of the sensitivity analysis

shows that the number of developers involved in the correction

of bugs (i.e., the fixer number) with frequency and entropy

values above the 70th percentile is statistically significantly

higher than other bugs in Fennec. If we identify highly-

impactful bugs using the 90th percentile, their fixing time

is significantly higher than the fixing time of other bugs in

Firefox. However, they are in small number (i.e., 4.2% of total

crash-related bugs).
�

�

�

	

All these results suggest that Mozilla quality assurance teams
do not prioritise highly-impactful bugs (a lower proportion
of these bugs are fixed) albeit they impact a large user base
and do not seem to be more difficult to fix than other bugs. If
developers could predict these highly-impactful bugs early on
and fix them, they would significantly reduce their negative
impact and improve the user perceived quality of the system.

RQ3: Can we predict highly-impactful bugs?

Motivation. Khomh et al. [13] have proposed an entropy-

based approach (described in Section III) that can be used

to identify highly-impactful bugs. However, this approach

requires a certain period of time to assess which bug occurs

frequently with high entropy. Table IV shows that the average

triaging time for highly-impactful bugs in Firefox and Fennec

is respectively 52.2 days and 36.2 days. During those periods,

the users of the systems are impacted by crashes that can

lead to data loss and–or frustration. In this research question,

we investigate strategies to predict highly-impactful bugs.

Specifically, our goal is to determine whether a bug is highly-

impactful at the moment it is reported (i.e., once the bug

report is filed). Such a prediction can be applied by software

organisations to identify highly-impactful bugs at an early

stage of development, e.g., during alpha or beta-testing phases.

This approach may allow developers to focus on highly-

impactful bugs earlier and improve the overall quality of the

software more efficiently.

Approach. We mine bug reports and crash reports and compute

the metrics described in Table V. We select these metrics

because they have been successfully used in bug prediction

studies (e.g., Shihab et al. [18] used Week day, Month day, and

Day of year to predict re-opened bugs) and they are available

once a bug is submitted. We choose several regression and

classification algorithms in R to build predictive models:

General Linear Model (GLM), C5.0, ctree, randomForest, and

cforest. GLM is an extension of linear multiple regression for
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a single dependent variable. It is extensively used in regression

analysis. Decision tree is a widely used classification approach

to predict a binary result. C5.0 and ctree are two different

implementations of decision tree. They are respectively from

the R packages “C50” and “party”. Based on decision tree,

Leo Breiman and Adele Culter developed Random Forest,

which uses a majority voting of decision trees to generate clas-

sification (predicting, often binary, class label) or regression

(predicting numerical values) results [5]. In our configuration,

we build 50 trees with five randomly selected attributes in each

tree. We use two implementations of Random Forest in this

paper: randomForest and cforest, which are respectively from

the R packages “randomForest” and “party”.

Before building our models, we use the Variance Inflation

Factor (VIF) analysis to remove correlated variables. We set

the threshold to 5. Variables with VIF result over the threshold

are considered as correlated. In Table V, * stands for the

eliminated metrics in Firefox while † stands for the eliminated

metrics in Fennec.

We cluster the extracted bugs of the different releases;

grouping bugs from minor releases into their main release

(e.g., bugs from releases 10.0.1 and 10.0.2 are grouped with

those of the major release 10). We intended to use consecutive

releases to test the performance of our prediction models but

observed that a high proportion of bugs is transferred across

the releases. In some releases, the “transferred bugs” account

for more than 80% of all bugs. This high bug transfer rate

is due to the fact that Mozilla follows a rapid release cycle

since 2011 [12]. With short release cycles, many bugs are

transferred from an old release to new releases before getting

fixed. If only few new bugs are discovered in a new release

there is no need for a prediction model since developers can

manually triage the bugs. Hence, to test the performance of

our proposed models, we consider releases with at least 25%

of new bugs. More specifically we test our models on releases

of Firefox and Fennec containing respectively 25%, 30%, and

35% of new bugs (in fact, there are merely two releases of

Firefox in which new bugs account for more than 40%). For

each of these thresholds, we select Firefox and Fennec releases

with amounts of new bugs greater than the threshold. We use

the new bugs to create a testing set. We use the bugs from

the preceding release to train the models. We compute the

accuracy, precision, recall and F-measure metrics for each of

the classification algorithms using only the new bugs from

the testing set (to avoid overfitting). We use the variable

importance function (e.g., varimp) in R to discover the top

predictors for each of the algorithms.

Findings. Table VI shows the average prediction accuracy,

precision, recall, and F-measure for the five classification

algorithms in Firefox and Fennec.




�
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cforest achieves the best recall when predicting highly-
impactful bugs in both studied systems. In general, our
predictive models can obtain a precision of 64.2% in Firefox
and 45.4% in Fennec, as well as a recall of 71.8% in Firefox
and 98.3% in Fennec.

TABLE V: Prediction metrics

Metric Description and Rationale

Bug report metrics

Week day Day of week (from Mon to Sun). Bug reports created on certain
week days may be overlooked for fixing; resulting into large
numbers of crashes. (e.g., Friday) [19], [3].

Month day Day in month (1-31). Bug reports created on certain days may
be overlooked for fixing; resulting into large numbers of crashes.
(e.g., some dates before holidays).

Month Month of year (1-12). Bug reports created in some seasons may
be overlooked for fixing; resulting into large numbers of crashes.
(e.g., December, during Chrismas holidays)

Day of year*† Day of year (1-366). Combined the rationales of month day and
month.

Description
Size

Number of words in a bug description. A too short message (due
to hasty work) or too long message (due to the difficulty) may
lead to fixing failure and late resolution of the bug, which may
lead to large numbers of crashes.

Component Component where a bug is located. Bugs occurring in complex
or central (i.e., highly coupled with other parts of the system)
components may be difficult to resolved, which may lead to large
numbers of crashes.

Reporter expe-
rience

Number of bugs filed by the reporter of a bug in the past.
A reporter who filed a high number of bugs is likely to gain
recognition for the relevance of her bug reports. Quality managers
may decide to pay more or less attention to her reported bugs,
which may result into large or low numbers of crashes.

Crash report metrics

Uptime Median uptime of crashes related to a bug. The uptime of a crash
is the duration (in seconds) of the period during which Firefox or
Fennec was running on a user’s machine before the occurrence
of the crash. Bugs related to low uptime values may cause large
numbers of crashes (a user may restart its system and–or the
software multiple times in hope that a rejuvenation will suppress
the crash).

Pre-opening
daily crashes

Average daily crash occurrences for a bug before the bug report
is filed (data extracted from crash reports during the period
of February 2010 to December 2011). High pre-opening crash
occurrences may imply high post-opening crash occurrences.

Pre-opening
daily impacted
users†

Average daily number of machine profiles impacted by a bug
before the bug report is filed (calculated from the same dataset
as pre-opening daily crashes). High pre-opening daily rate of
impacted machine profiles is likely to translate into high post-
opening rate of impacted machine profiles.

Code complexity metrics

LOC Lines of code of the bug-related class. A large class may be hard
to maintain and prone to crashes.

Number of
functions*†

Number of functions in the bug-related class. Same rationale as
LOC.

Cyclomatic
complexity

Average cyclomatic complexity of the functions in the bug-related
class. Complex code is hard to maintain and prone to crashes.

Max nesting† Maximum level of nested functions. A high level of nesting
increases the conditional complexity and is likely to increase the
crashing probability.

Comment ratio Ratio of the number of comments to the total lines of code in the
bug-related class. A code with few comments may not be easy
to understand, and may consequently lead to large numbers of
crashes.

Social networking analysis metrics

(other selected metrics share the same rationale as PageRank)

PageRank*† Time fraction spent to “visit” the bug-related class in a random
walk in the call graph. If an SNA metric of a class is high, a bug
in that class may be triggered through multiple paths and the bug
is likely to appear frequently, because multiple paths lead to that
class.

Betweenness In the call graph, number of classes passing through the bug-
related class among all shortest paths.

Closeness Sum of lengths of the shortest call paths between the bug-related
class and all other classes.

Indegree Numbers of callers of the bug-related class.

Outdegree Numbers of callees of the bug-related class.
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TABLE VI: Accuracy, precision, recall and F-measure (in %)

obtained from GLM, C5.0, ctree, randomForest, and cforest

to predict highly-impactful bugs (the proportion of new bugs

is > 35% (testing set))

System Metric GLM C5.0 ctree randomForest cforest

Firefox

Accuracy 40.2 64.2 66.2 64.9 63.1

precision 31.7 60.3 64.2 61.7 58.8

recall 23.2 70.6 64.0 66.9 71.8

F-measure 26.8 65.0 64.1 64.2 64.7

Fennec

Accuracy 52.2 45.2 46.2 47.3 45.4

precision 32.6 43.8 45.1 45.5 44.9

recall 6.6 80.1 94.9 91.7 98.3

F-measure 10.9 56.6 61.2 60.9 61.6

TABLE VII: Number of training/testing pairs, precision and

recall (in %) of cforest with different proportions of new bugs

(testing sets)

New bugs
Firefox Fennec

# pairs Precision Recall # pairs Precision Recall

25% 66 49.4 84.5 21 42.3 97.2

30% 34 49.2 83.1 17 43.2 97.4

35% 12 58.8 71.8 12 44.9 98.3

Table VII shows how the precision, recall, and F-measure of

the cforest algorithm varies with the size of the testing set (i.e.,
the amount of new bugs). Precision and recall increase with

the size of the testing set in Fennec; in Firefox, the precision

increases while the recall decreases.

The best results are obtained when the proportion of new

bugs represents more than 35% of all bugs. We computed the

top predictors for the different models and found that pre-
opening daily impacted user number is the most important
predictor for four algorithms in Firefox; meaning that the
pre-opening (i.e., before the bug report is opened) impact
of a bug on users is a good indicator of its future impact
on users (i.e., after bug opening), which is an expected

result. In Fennec, component of bug, bug opened month, and

median crashing uptime are the top predictors for at lease two

algorithms. The best predictor is not obviously identified for

this system. One explanation may be the small size of Fennec.

RQ4: Which benefits can be achieved by predicting highly-
impactful bugs?

Motivation. Results from RQ3 show that highly-impactful

bugs can be predicted early on before a new release, with a

recall of 71.8% in Mozilla and 98.3% in Fennec. Therefore,

rather than waiting for a large number of crashes to occur,

developers can identify and address highly-impactful bugs

without delay. To quantify the benefits that can be achieved by

predicting highly-impactful bugs, we simulate the application

of our proposed cforest model (the best predictive model of

the case study presented in RQ3) to the 12 pairs of releases

that contain at least 35% of new bugs, and assess the amount

of crash occurrences and unique machine profiles that can be

avoided.

Approach. In the studied training releases, we compute the

median fixing time (i.e., the period between the bug opening

date and the last modification date) of all resolved bugs with

the priority “P1”. Those bugs are assigned the highest priority

and are expected to be fixed earlier than other bugs. We refer to

it as durationmed. For the bugs in the studied testing releases,

we apply our cforest model to predict their categories (i.e.,
highly, skewed, moderately, or isolated). We use Equation (3)

to compute the simulated fixed date of a bug:

Dpf = Do +Durationmed (3)

Where Dpf stands for the date at which a highly-impactful

bug, which is successfully predicted or transferred from a

training release, would be potentially fixed; Do stands for

the opened date of the bug; and Durationmed stands for

the median fixing duration of fixed bugs that were assigned

with the highest priority (i.e., P1). We consider all the crashes

(related to the predicted or transferred highly-impactful bug)

that occurred after the simulated fixing date, as crashes that can

be avoided, if developers fix the bug without delay. We identify

machine profiles impacted by these crashes by applying the

heuristic described in Section III.

To calculate the proportion of crash occurrences that can

be reduced, we sum the crashes that can be avoided for all

successfully predicted and transferred highly-impactful bugs

in each testing release, then divide this number by the total

number of crashes in the release. To calculate the proportion of

unique machine profiles that can be reduced, for every testing

release, we subtract each successfully predicted or transferred

bug’s related machine profiles that are impacted before the

simulated fixing date from the total unique machine profiles

impacted by this bug. We divide this number by the total

number of machine profiles to obtain the percentage of reduced

machine profiles for the bug. Next, we compute the average

percentage of reduced machine profiles for all bugs in the

testing release. Finally, we compute the average percentage

of crash occurrences and unique machine profiles that can be

reduced for Firefox and Fennec releases respectively.

Since developers’ time and resource is limited, we also

compute the amount of time that developers would spend

fixing false positives (i.e., wrongly predicted highly-impactful

bugs). We divide the result by the total time spent on bug

fixing activities to calculate the percentage of time lost to false

positives.

Finding. A considerable amount of crash occurrences can
be avoided by our “early triaging technique”. On average,
the number of crash reports can be reduced by 23.0% in
Firefox and by 13.4% in Fennec. The number of unique
machine profiles that are impacted by crashes can be
reduced by 28.6% in Firefox and by 49.4% in Fennec. In

addition, false positive highly-impactful bugs would consume

on average 6.3% of the total bug fixing time in Firefox

(respectively 29.6% in Fennec). We manually investigated

these false positive highly-impactful bugs and found that

96.4% of these bugs in Firefox (respectively 95.5% in Fennec)

are assigned a severity level of “blocker” or “critical”. Also,
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51.2% of them eventually get fixed in Firefox (respectively

41.8% in Fennec). This suggests that even though these false

positives are not highly-impactful bugs in the sense that they

do not have both high entropy and high frequency, they

are nonetheless important and should be fixed in priority.

Therefore, the amount of time spent on these bugs is not

completely wasted.



�
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In conclusion, these results show that triaging and predicting
highly-impactful bugs early (before a new release of a
software system) can help reduce a large amount of crashes
experienced by users, which could improve the overall quality
of the software system in a more cost-effective manner.

VI. THREATS TO VALIDITY

This section discusses the threats to validity of our study

following the guidelines for case study research [24].

Construct validity threats concern the relation between

theory and observation. In this study, the construct validity

threats are mainly due to measurement errors. We parse crash

and bug reports from copies of Socorro and Bugzilla databases

obtained from the Mozilla corporation. Khomh et al. [13]

found in a previous study that highly-impactful crash-types

require longer fixing time. However, our result in this study

show that the fixing time of highly-impactful bugs in Firefox

is slightly lower in comparison to other bugs. We attribute this

difference to the fact that a crash-type is often related to more

than one bug (and vice-versa). Also, in this study, we rely on

machine profiles to identify highly-impactful bugs instead of

users’ profiles inferred from installation time as in our previous

work [13]. A choice dictated by the data provided to us by the

Mozilla corporation, which do not contain references to users.

In RQ4, we estimate the date at which a successfully predicted

or transferred highly-impactful bug is fixed by adding the

median fixing duration of fixed bugs that are assigned the

highest priority in our training data set to the bug opening

date. This estimation may not be accurate. However, our goal

in RQ4 is only to provide a simulation of the proportion of

crash occurrences that can be avoided.

Internal validity threats concern factors that may affect a

dependent variable and were not considered in the study.

In RQ3, we imposed a minimum size to our testing sets,

i.e., we considered releases with at least 25% of new bugs.

However, to avoid biasing our results with this threshold, we

performed additional evaluations of our proposed models using

respectively 25%, 30%, and 35% of new bugs. In Bugzilla, all

time stamps are reported in UTC timezone. Therefore, reported

week day, month day, and month might not precisely reflect

developers’ local time. However, from all these metrics, only

month contributed significantly to the models (see the results

about top predictors). This metric (i.e., month) is less likely

to be biased by time zone conversions.

Conclusion validity threats concern the relation between the

treatment and the outcome. We paid attention not to violate

assumptions of the performed statistical tests. To determine

the cut-off of bugs with high crash entropy and high crash

frequency, we conducted a sensitivity analysis. We applied

different thresholds of 50%, 70%, and 90% of percentiles

to verify the characteristics of highly-impactful bugs. Results

show that different percentiles do not affect the conclusion.

For any detail about the sensitivity analysis, please check our

data at: https://github.com/swatlab/highly-impactful. We used

non-parametric tests that do not require making assumptions

about the data set distribution. In RQ2, we did not investigate

the characteristics of the four categories of bugs with respect

to priority and severity assigned in Bugzilla because, in our

previous work [13], we found that the priority and severity

labels in Mozilla’s bug reports do not reflect the concrete levels

of attention paid by developers when fixing the bugs.

External validity threats concern the possibility to generalise

our results. Although we only conduct our case study with

two Mozilla subsystems, because only the Mozilla Foundation

has opened their crash collecting database to the public [22]

to date, most of our findings are consistent with previous

studies [13], [25]. We share our data and scripts at: https://

github.com/swatlab/highly-impactful. Further studies with dif-

ferent systems are required to verify our results and make our

findings more generic.

VII. RELATED WORK

In this section, we introduce some related literature on bug

triaging and prediction models.

A. Bug triaging

In previous studies, researchers proposed different defect

triaging techniques to help software organisations improve

their triaging activities. Anvik et al. [4] introduced a semi-

automated approach to ease the assignment of reports to

a developer. They applied a supervised machine learning

algorithm to learn the kinds of reports resolved by each

developer in the bug repository, then suggested a small number

of suitable developers to resolve each new bug. Canfora and

Cerulo [6] also proposed a semi-automatic approach to select

the best candidate set of developers to resolve new change

requests. This approach identifies the candidate developers

using the textual description of the change requests. Menzies

and Marcus [15] proposed an automated approach, SEVERIS,

to help triage teams assign severity levels to bug reports.

Their approach is based on standard text mining and machine

learning techniques applied to existing sets of bug reports.

Weiss et al. [23] proposed an approach to help triage teams

automatically predict the fixing effort (i.e., bug fixing time).

This approach allows for early effort estimation, to help triage

teams better assign issues. Jeong et al. [11] studied bug tossing

(i.e., reassignment of bug reports) and found that tossing

bugs lead to longer bug fixing time. They proposed a tossing

graph model, which captures past tossing history, to reduce

tossing steps and improve the accuracy of their automatic

bug assignment approach. Khomh et al. [13] proposed an

entropy based technique to triage crash-types in Firefox. Their

proposed approach achieves a better classification of crash-

types than the current technique applied by Firefox teams. In
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this research, we apply the entropy based approach by Khomh

et al. [13] to triage bug reports, since we can map crash-types

to their corresponding bugs. Our approach can identify bugs

that affect a large user base with high crashing frequency.

B. Prediction models

In previous studies, researchers found that some factors may

link to software defects or failures. Hassan et al. [8] created

decision trees to predict ahead of time the certification result of

a build for a large software project in IBM Toronto Lab. Zim-

mermann et al. [25] used Logistic Regression model to predict

bug re-opening in Windows. Shihab et al. [18] compared C4.5,

Zero-R, Naive Bayes and Logistic Regression algorithms to

predict bug re-opening in three open source projects. In their

study, the decision tree model, C4.5, yields the best prediction

results. In our previous work [2], we used GLM, C5.0 (the

improved version of C4.5), ctree, randomForest, and cforest to

predict bug re-opening in supplementary bug fixes. We found

that randomForest outperforms C5.0 and other algorithms. In

this study, cforest, another implementation of Random Forest,

achieves the best prediction results.

VIII. CONCLUSION

Bug triaging guides software practitioners to focus their

effort to address bugs with high priority when resources

are limited. Current bug triaging approaches only take bugs’

crash frequency into account while ignoring the impact of

bugs on end users. Although previous studies used entropy

analysis to improve the current bug triaging approaches, these

approaches were applied only after end users have already

suffered crashes for a certain period of time. In this paper,

after examining the prevalence and characteristics of highly-

impactful bugs, i.e., bugs with high crashing frequency and

entropy, in Mozilla Firefox and Fennec, we built predictive

models to help software organisations predict them early

before they impact a large population of users. Our proposed

models can predict highly-impactful bugs with a precision

up to 64.2% (in Firefox) and a recall up to 98.3% (in

Fennec). Using a simulation to evaluate the benefit of our best

predictive model, cforest, we found that, on average, our early

prediction technique can effectively prevent 23.0% of crash

occurrences in Firefox (respectively 13.4% in Fennec) and

reduce 28.6% of unique machine profiles that are impacted in

Firefox (respectively 49.4% in Fennec). Software organisations

could use our suggested predictive models to identify highly-

impactful bugs and improve the satisfaction of their users. In

the future, we plan to implement our approach in a tool and

validate our results on different software systems. We also

appeal to other software organisations to share their crash

report databases with the public to help generalise the results

of our study.
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[19] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In ACM sigsoft software engineering notes, volume 30, pages
1–5. ACM, 2005.

[20] SLOCCount. http://www.dwheeler.com/sloccount/, 2014. Online; ac-
cessed October 13th, 2014.

[21] Socorro: Mozilla’s crash reporting system. https://crash-stats.mozilla.
com/home/products/Firefox, 2014. Online; accessed October 13th, 2014.

[22] S. Wang, F. Khomh, and Y. Zou. Improving bug management using
correlations in crash reports. Empirical Software Engineering, pages
1–31, 2014.

[23] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it
take to fix this bug? In Proceedings of the Fourth International Workshop
on Mining Software Repositories, MSR ’07, pages 1–, Washington, DC,
USA, 2007. IEEE Computer Society.

[24] R. K. Yin. Case Study Research: Design and Methods - Third Edition.
SAGE Publications, 3rd edition, 2002.

[25] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characterizing
and predicting which bugs get reopened. In Software Engineering
(ICSE), 2012 34th International Conference on, pages 1074–1083. IEEE,
2012.

271271


