
Challenges and Issues of Mining Crash Reports
Le An, Foutse Khomh

SWAT, Polytechnique Montréal, Québec, Canada
{le.an, foutse.khomh}@polymtl.ca

Abstract—Automatic crash reporting tools built in many soft-
ware systems allow software practitioners to understand the
origin of field crashes and help them prioritise field crashes
or bugs, locate erroneous files, and/or predict bugs and crash
occurrences in subsequent versions of the software systems. In
this paper, after illustrating the structure of crash reports in
Mozilla, we discuss some techniques for mining information from
crash reports, and highlight the challenges and issues of these
techniques. Our aim is to raise the awareness of the research
community about issues that may bias research results obtained
from crash reports and provide some guidelines to address certain
challenges related to mining crash reports.

Index Terms—Crash report, bug report, mining software
repositories.

I. INTRODUCTION

Nowadays, crash reporting tools are embedded in many
software systems to collect information about crashes in the
field (i.e., when a program stops functioning properly in a
user environment). Crashes with the same crashing signature,
the stack trace of the failing thread, will be grouped into
a crash type. Usually, software quality managers prioritise
crash types by the number of crash occurrences, then file
the top crash types into bug reports. Crash reports provide
useful reference to analyse and resolve bugs. They could help
software practitioners locate erroneous code, understand the
impact of failures, and prioritise crash-related bug reports.

Leveraging crash reports, previous studies propose new
ideas to improve the current software maintenance techniques.
Khomh et al. [1] analysed crash reports of Mozilla Firefox
and proposed an entropy metric that reveals the distribution of
the occurrences of crashes among end users. Wang et al. [2]
studied the crash reports of Firefox and stack traces of Eclipse.
They proposed five rules to automatically identify correlated
crash types. In a recent study, we also analysed crash reports
from Mozilla products to identify bugs that affect a large
population of users [3].

However, some inherent properties of crash reports may
challenge the research conclusions if researchers and software
practitioners do not take care of them when they mine infor-
mation from crash reports. For example, user information is
not always available in crash reports, and the many-to-many
relationship between crashes and their related bugs increases
the difficulty of analysis. Furthermore, since there are not
enough publicly opened crash collecting databases, researchers
can hardly estimate the latent peril due to some of these
issues (e.g., lack of precise users’ information) or validate the
generalisability of their findings.

In the rest of this paper, we describe the structure of a
crash report before presenting some analytic techniques to
mine implicit information from crash reports. For each of the
techniques, we discuss its challenges and issues. After giving
an overview of the related work, we conclude the paper with
suggestions for future studies.

II. STRUCTURE OF CRASH REPORTS

In this section, we take crash reports from Mozilla Socorro
server (Mozilla’s crash collecting database) [4] as an example
to describe the typical crash collecting system.

Mozilla delivers its applications with a built-in automatic
crash reporting tool: Mozilla Crash Reporter, which sends a
crash report to the Mozilla Socorro server, once end users
encounter an unexpected halt of the application. Each crash
report records a stack trace of the falling thread and other
information about the user’s environment. A stack trace is an
ordered set of frames where each frame indicates a method
signature and a link to the corresponding source code. Source
code information is not always available in the frames, espe-
cially when a frame belongs to a third party binary [1].

Crash Time - OCT 24, 2010 11:20:53
Firefox Install Time – SEP 22, 2010 10:20:15
System Uptime – 1125 seconds
Version- 3.6.13
OS – Windows NT 6.1 2600
CPU – x86
User Comment –
Stack Trace –

Crash Report – e1c1267874640-94324-32423

Frame
0
1
2
3
4
5
6
7

Module

User32.dll
User32.dll
User32.dll
XUI.dll
XUI.dll
Nspr4.dll
XUI.dll

Signature
@0x654789
UserCallWinProcCheckWow
DispatchMethod
DispatchMessage
ProcessNextNativeEvent
nsShell::OnProcess
mozilla::Pump
MessageLoop:Run

Source

Src/win/nsAppShell.cpp:179
Src/win/nsShell.cpp:77
Ipc/glue/MessagePump.cpp:134
Ipc/glue/MessageLoop.c:784

Each Crash Report is
assigned a unique ID

User Environment
Information

All crash Reports with top
signature as
“UserCallWinCheckWow” are
grouped together

Not all frames have Source
Information

Fig. 1: A sample crash report from Firefox

Figure 1 shows a sample crash report from Mozilla Firefox.
Among all information provided in a crash report, researchers
and software practitioners may be interested in the following
attributes when they study crashes for software maintenance:

• crash signature: top method signature of a crash. Crashes
with the same crash signature are grouped into one crash
type in the Socorro server [1].

• Install age: the time in seconds from the installation until
the crash occurred.

• Crash date: the point of time when the crash was re-
ported.

/15/$31.00 c© 2015 IEEE SWAN 2015, Montréal, Canada17

• OS name: name of the operating system on which the
crash occurred.

• OS version: version of the operating system on which the
crash occurred.

• CPU type: family model of the CPU of a machine on
which the crash occurred.

• Bug list: list of bugs related to the crash.
• Up time: the amount of seconds since the application

startup.
Software researchers and practitioners can refer to the So-

corro documentation [5] for the description of other attributes.

III. ANALYSIS OF CRASH REPORTS AND CHALLENGES

In this section, we describe some analytic techniques of
crash reports for software maintenance and discuss their chal-
lenges and issues.

A. User Identification

When we study crash reports, an important process is to
identify unique users who encounter crashes in a software
system. Mapping crashes to different users can help software
practitioners understand the dispersion of these crashes in the
user base and determine the priority of related crash types
and bugs. However, user identity is not always available.
For example, Mozilla crash reports do not contain personal
information indicating unique users reporting the crashes due
to privacy concerns. Khomh et al. [1] used a heuristic where
they took installed point of time (subtraction of crash date
from install age) of the studied system to identify different
users (noted as install profiles). In our recent work [3], which
consisted in studying the crashing impact of bugs on the user
population base, we used a vector of computer configuration
(combination of CPU type, OS name, and OS version) to
represent different “users” (noted as machine profiles) in a
system.

However, these user identification heuristics may lead to
inconsistent results. For example, when we apply the heuristic
by install profile, two users who install an application at the
same point of time (by second) may encounter quite different
types of crashes. When we apply the heuristic by machine
profile, users with the same computer configuration may also
exhibit different crashing characteristics. In other words, users
that happened to install a software at the same time or in
the same model of computer, especially for enterprise users
whose computers are uniformly configured or software is
simultaneously installed, may behave differently, and should
not be clustered together in terms of crash analysis.

B. Mapping between Crashes and Bugs

When we study the characteristics of bugs related to field
crashes, we should map crash reports to their corresponding
bugs in order to understand the distribution of crash-related
bugs in the user base. Using the information provided in crash
reports and bug reports, there are two general ways to link
related bugs and crashes.

Algorithm 1: Map different crashed users to a crash type,
and map different crash types to a bug

Input: signature, user, buglist
1 if signature in dictcrash then
2 stackuser ← dictcrash[signature]
3 add user to stackuser
4 else
5 stackuser ← new stack with user
6 dictcrash[signature]← stackuser

7 foreach bug in buglist do
8 if bug in bug dict then
9 setsignature ← dictbug[bug]

10 add signature to setsignature

11 else
12 setsignature ← new Set with signature
13 dictbug[bug]← setsignature

Algorithm 2: Map crashed user occurrences to their bugs
Input: dictbug

1 foreach bug in dictbug do
2 setsignature ← dictbug[bug]
3 foreach signature in setsignature do
4 stackuser ← dictcrash[signature]
5 concatenate stackuser to occuruser

On the one hand, we can use the bug lists indicated in
crash reports to directly map crashes to bugs. However, some
crashes are reported before the opening of their corresponding
bugs. If we apply the direct mapping only, we may omit the
information about these crashes.

On the other hand, we can also perform an indirect mapping
from crashes to bugs via crash types. In other words, we
perform a two-step mapping as following: we map each bug
to a set of crash types (i.e., a group of crashes with the
same crash signature), then map each crash type to a set of
crash reports. Concretely, we build two hash tables, dictbug
and dictcrash. In any item of dictbug , the key is a bug ID
and the value is a set of crash signatures. In any item of
dictcrash, the key is a crash signature and the value is a
stack1 of crash reports. By associating the two hash tables,
we can finally map a bug to a set of corresponding crash
reports, even including those lacking bug information (i.e.,
crashes reported before the creation of the bugs). Similarly,
to investigate the crash distribution in the user base, we can
also link different users (represented by install profiles or
machine profiles) to a bug by analysing the bug’s related crash
reports. Algorithm 1 and 2 show the pseudocode to link a
bug to the users suffering its related crashes.2 However, in
a software system, a crash report may bring about several
bugs, a bug may be also related to more than one crashes.

1 Every new crash report / crash occurrence will be appended at the end
of the structure.

2 The mapping script in Python and example data are available in the
following repository:
http://swat.polymtl.ca/anle/data/SWAN2015/

18

The many-to-many relationship increases the difficulty to map
a bug to its corresponding crash reports. Compared with the
direct mapping, the concatenation operations (in Algorithm 2)
in the indirect mapping require more execution time. Usually,
crash analysis involves a big dataset (e.g., Mozilla receives
2.5 million crash reports on the peak day each week, namely,
around 50GB of data need to be processed every day [6]),
reducing time complexity of the mapping technique can help
researchers and software practitioners improve their analytic
efficiency to early understand the impact of the crash-related
bugs.

To mitigate the above mentioned problems, we can combine
the direct and indirect mapping techniques together. In other
words, if the bug list is available in a crash report, we will
use the direct mapping; otherwise, the indirect mapping will
be applied. The combined approach can effectively reduce the
mapping algorithm’s time complexity while linking a bug to
all its possible crash reports. Besides, according to our case
study [3], direct mapping and indirect mapping may lead to
results with subtle difference. Suppose a bug B is due to a
crash C1 pertaining to the crash type CT . Another crash C2

also classified as type CT might not be related to the bug B.
Because most software organisations, such as Mozilla, group
crashes with the same “top frames” (in a stack trace of failing
thread) into a crash type. When a stack trace contains a lot of
frames, different software organisations may extract different
numbers of “top frames” as crashing signatures. Different
criteria for the selection of the “top frames” may result in
different distributions of crash types, and translate into differ-
ent mappings between crashes and bugs. Therefore, to make
sure the mapping results with a high precision, efficiency, and
completeness, we suggest that software practitioners prioritise
the direct mapping before resorting to the indirect mapping
using crash types.

C. Relationship between Crashes and Bug Fixes

Furthermore, we can also map crash reports to bug fixes to
investigate whether developers efficiently addressed reported
field crashes and estimate the effort required to fix the crashes.
There are two ways to link a crash type to its corresponding
bug fixes, via bug reports and by text analysis. In our previous
work, we described a technique to map fixing commits to bug
reports [7]. So we can use bug reports as an intermediary
to link crashes and commits. On the other hand, if a bug
contains different crash types that are then related to many
bugs, it is better to directly link a crash type (in the crash
collecting system) to bug fixes (in the version control system)
by comparing the stack trace of the failing thread in crash
reports and the revised code in bug fixes. Namely, we check
whether the crash-related code (or in a coarse level, the file
of this code) is revised in any revisions. Linking a crash to its
revisions, we can compute the fixing duration and the number
of involved developers of the crash, i.e., the crash’s fixing
effort.

Although bug fixing commits could be used to assess the
effort (or estimated effort) required to fix a crash type, some

factors may challenge the results of this approach. Especially,
if we use bug reports to link a crash type and its corresponding
bug fixes, some kinds of bugs may “exaggerate” the required
effort of a crash type. For example, some re-opened bugs, i.e.,
bugs that have been opened more than once, may be due to an
inactive attitude of software developers (i.e., these bugs have
been prematurely closed) [7]. The bug fixes ported before the
re-opening to these bugs should not be taken into consideration
when computing the required effort. Moreover, crashes due
to non-reproducible bugs [8] may bias effort estimations as
well, because these bugs only show up on certain machines
(from certain users), and do not affect other users. Joorabchi et
al. [8] found that many non-reproducible bugs are mislabelled,
because the available resolutions in the repositories do not
cover all possible scenarios. These “defects” are mainly due
to wrong configuration of a software, and should not have
been classified as bugs. If software managers compute the
fixing effort of the false positive bugs as other bugs, they may
overestimate the trivial issues while omitting the serious ones.

D. Localisation of Buggy Files

Crash reports can help for fault localisation as well. There
exist plenty of studies on automatic bug localisation. For
example, Liblit et al. [9] studied predicate patterns in correct
and incorrect execution traces. They proposed an algorithm to
separate the effects of different bugs and identify predictors
associated with individual bugs. Nessa et al. [10] introduced
a bug localisation algorithm based on N-gram analysis to
rank the executable statements of a software by level of
suspicion. Wang et al. [2] proposed an algorithm based on
crash correlation groups to locate and rank buggy files by
analysing the stack traces in correlated crash types. Crash
reports provide failing source code location in their stack
traces, but this information is not always complete (e.g., in
the sample shown in Figure 1, source code information is
not available in some frames). There are generally three types
of source code information given in a crash report. In the
best case, buggy file paths are directly indicated in the frames
of a stack trace. Sometimes, crashed method signatures are
provided in the stack trace. We should iteratively search the
signatures in every file of source code repository to locate the
possible buggy files. In the worst case, just crashing memory
addresses are given in the frames from which we can hardly
locate the source of a bug.

Nevertheless, we should not only rely on crash reports
to locate erroneous code, because this technique is merely
applicable to crash-related bugs while not all crash reports
contain related files’ location or crashed methods. Bug fixes
are another source to discover buggy files. We can apply the
heuristic described in [7] to link a bug to its related bug fixes
then identify the changed files in the bug fixes. In our case
study with Mozilla, Eclipse, Netbeans, and Webkit, we found
that bug reference is not always available in bug fixes, i.e.,
some bugs may not be able to get linked to their bug fixes
by this heuristic. Therefore, crash reports could be used as a
complementary source to detect buggy file locations.

19

E. Suggestions

When conducting empirical studies with crash report data,
researchers should pay attention to the above mentioned issues.
Before drawing any conclusion, the threats to validity (e.g.,
user identification technique) should be carefully discussed.
In addition, different software organisations may design their
crash reports in different format and structure. At the time
of writing this paper, too few crash collecting databases have
been publicly available to researchers. Mozilla Socorro is the
only source that we can explore for a pertinent case study.

We hope that more software organisations could share their
crash collecting databases to allow researchers to verify the
generalisability of our proposed approaches as well as other re-
lated work and verify whether the above mentioned issues are
relevant in a larger context (i.e., beyond the case of Mozilla).
By analysing crash reports from different organisations, we
can also propose ideas to improve the current structure of
crash reports and crash collecting systems to help software
organisations augment their productivity, user satisfaction, and
reduce their maintenance effort.

IV. RELATED WORK

In this section, we introduce some related work on mining
crash reports.

Podgurski et al. [11] introduced an automated failure clus-
tering approach for the classification of crash reports, in order
to facilitate their prioritisation and the diagnostic of their root
causes. By mining crash reports in Mozilla Firefox, Khomh et
al. [1] proposed an entropy-based approach that can be used
to identify crash types by not only their crashing frequency
but also their crashing dispersion among users. Inspired by
the work of Khomh et al., Wang et al. [2] analysed crash
information in Firefox and Eclipse, and proposed an algorithm
that can be used to locate and rank buggy files as well as
a method to identify duplicate and related bug reports. Kim
et al. [12] studied crash reports and impacted source files in
Firefox and Thunderbird to predict top crashes before a new
release of a software.

Most of these researchers used Mozilla Socorro crash re-
porting system as a subject system. Because, as far as we
know, only the Mozilla Foundation has opened the crash re-
ports to the public [2]. Though Wang et al. [2] studied another
system, Eclipse, they could obtain crash information only
through the stack traces contained in the bug reports (instead
of using crash reports). However, stack trace information is not
always available in bug reports for the majority of software
systems. Dang et al. [13] proposed a method, ReBucket, to
improve the current crash reports clustering technique based on
call stack matching. But their subject crash collecting database,
Microsoft’s Windows Error Reporting (WER) system, is not
accessible for every researcher.

V. CONCLUSION AND FUTURE WORK

Previous studies on mining crash reports proposed ap-
proaches to improve crash triaging, locate buggy files and
duplicate bug reports, as well as predict top crashes in future

versions of a software system. However, researchers still have
to face some challenges and issues when studying field crash
reports: such as the lack of precise information about users
or buggy files in crash reports, the many-to-many mapping
between bugs and crash reports, which makes it difficult to
link a crash to its bug fixing commits, and even the lack
of open source crash report databases. These issues may
challenge the conclusions drawn from these studies and should
be carefully taken into account when conducting empirical
studies in the future. Especially, the last issue greatly limits
the generalisation of the ideas developed in previous studies.
In this paper, we illustrate the structure of crash reports in
Mozilla, then describe some crash analysis techniques and
discuss their corresponding problems. We appeal that more
software organisations share their crash report databases for
future researchers in order to improve our knowledge of the
problems. Various subject systems can also provide different
perspectives to help crash report designers improve current
crash reporting systems and further help software practitioners
improve the satisfaction of their end users.

REFERENCES

[1] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan, “An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox,”
in Reverse Engineering (WCRE), 2011 18th Working Conference on.
IEEE, 2011, pp. 261–270.

[2] S. Wang, F. Khomh, and Y. Zou, “Improving bug management using
correlations in crash reports,” Empirical Software Engineering, pp. 1–
31, 2014.

[3] L. An and F. Khomh, “An empirical study of highly-distributed
bugs in mozilla firefox,” École Polytechnique de Montréal, Tech.
Rep., November 2014. [Online]. Available: http://swat.polymtl.ca/anle/
technicalreports/highlydistributed.pdf

[4] “Socorro: Mozilla’s crash reporting system,” accessed 6th
January, 2015. [Online]. Available: https://crash-stats.mozilla.com/
home/products/Firefox

[5] “Socorro documentation,” accessed 6th January, 2015. [Online].
Available: http://socorro.readthedocs.org/en/latest/index.html

[6] “Socorro: Mozilla’s Crash Reporting Server,” accessed 6th January,
2015. [Online]. Available: http://blog.mozilla.org/webdev/2010/05/19/
socorro-mozilla-crash-reports/

[7] L. An, F. Khomh, and B. Adams, “Supplementary bug fixes vs. re-
opened bugs,” in Proceedings of the 14th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM), Vic-
toria, BC, Canada, September 2014.

[8] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah, “Works for me!
characterizing non-reproducible bug reports,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
62–71.

[9] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in ACM SIGPLAN Notices, vol. 40, no. 6.
ACM, 2005, pp. 15–26.

[10] S. Nessa, M. Abedin, W. E. Wong, L. Khan, and Y. Qi, “Software fault
localization using n-gram analysis,” in Wireless Algorithms, Systems,
and Applications. Springer, 2008, pp. 548–559.

[11] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,” in
Software Engineering, 2003. Proceedings. 25th International Conference
on. IEEE, 2003, pp. 465–475.

[12] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park, “Which
crashes should I fix first?: Predicting top crashes at an early stage to
prioritize debugging efforts,” Software Engineering, IEEE Transactions
on, vol. 37, no. 3, pp. 430–447, 2011.

[13] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket:
A method for clustering duplicate crash reports based on call stack
similarity,” in Proceedings of the 2012 International Conference on
Software Engineering. IEEE Press, 2012, pp. 1084–1093.

20

