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Abstract—Like any other software systems, service-based
systems (SBSs) evolve frequently to accommodate new user
requirements. This evolution may degrade their design and
implementation and may cause the introduction of common bad
practice solutions—antipatterns—in opposition to patterns which
are good solutions to common recurring design problems. We
believe that the degradation of the design of SBSs does not
only affect the clients of the SBSs but also the maintenance
and evolution of the SBSs themselves. This paper presents the
results of an empirical study that aimed to quantify the impact
of service patterns and antipatterns on the maintenance and
evolution of SBSs. We measure the maintenance effort of a service
implementation in terms of the number of changes and the size of
changes (i.e., code churns) performed by developers to maintain
and evolve the service; two effort metrics that have been widely
used in software engineering studies. Using data collected from
the evolutionary history of the SBS FraSCAti, we investigate if
(1) services involved in patterns require less maintenance effort;
(2) services detected as antipatterns require more maintenance
effort than other services; and (3) if some particular service
antipatterns are more change-prone than others. Results show
that (1) services involved in patterns require less maintenance
effort, but not at statistically significant level; (2) services detected
as antipatterns require significantly more maintenance effort
than non-antipattern services; and (3) services detected as God
Component, Multi Service, and Service Chain antipatterns are
more change-prone (i.e., require more maintenance effort) than
the services involved in other antipatterns. We also analysed
the relation between object-oriented code smells and service
patterns/antipatterns and found a significant difference in the
proportion of code smells contained in the implementations of
service patterns and antipatterns.

Keywords—SOA, services, patterns, antipatterns, maintenance,
change-proneness, empirical software engineering.

I. INTRODUCTION

Service Oriented Architecture (SOA) is a dominant archi-
tectural choice in the industry today [1]. SOA offers the ability
to develop low-cost, reusable, and scalable distributed systems
by composing ready-made services, i.e., autonomous, reusable,
and platform-independent software units that clients can search
and invoke through a network, such as the Internet. Like any
complex software systems, service-based systems (SBSs) also
evolve to accommodate new user requirements both in terms
of functionality and quality of service (QoS). These frequent
changes often degrade the design and QoS of SBSs and cause
the introduction of antipatterns which are common bad practice
solutions—in opposition to patterns which are good solutions
to common recurring design problems. A degradation of the

design of an SBS means that it fails to follow one of the
eight SOA design principles [2], including loose coupling,
composability, and reusability. Multi service [3], an example of
service antipattern corresponds to a service that implements a
multitude of business and technical abstractions. Its reusability
is low because it aggregates too much into a single service,
resulting in methods with low cohesion. This service is often
unavailable to end-users because of its overload, which may
induce a high response time. Proxy pattern [4], an example of
service pattern, is a well-known service design pattern that
adds an additional indirection level between the client and
the invoked service, e.g., to support adding non-functional
behaviors. Despite the relatively large body of work on the
detection of service patterns and antipatterns in SBSs (e.g.,
[5], [6], [7], [8]), to the best of our knowledge, there are very
few studies that empirically investigated the impact of service
patterns or antipatterns on the maintenance and evolution of
SBSs. To perform such a study, one needs detailed information
about the implementations of services, which is not easy
to obtain because of the scarcity of open-source SBSs. We
believe that service antipatterns do not only affect the clients of
SBSs but also the maintenance and evolution of the SBSs, for
example by making it harder for developers to modify existing
functionalities, or to implement new ones. Several works exist
in the object-oriented (OO) literature relating code smells and
antipatterns to the change-proneness of software systems [9],
[10], [11]. However, because of the dynamic nature of service
patterns and antipatterns [6] and because of the difference in
granularity, results obtained for OO systems cannot be simply
transferred to SBSs. Service antipatterns and OO antipatterns
are two very different concepts. Indeed, one of the root causes
of OO antipatterns is the adoption of a procedural design style
in OO systems, whereas service antipatterns often stem from
the adoption of OO design style in SBSs.

In this paper, using data collected from the evolutionary
history of the SBS FraSCAti, we perform an empirical study
aimed at quantifying the impact of service antipatterns on
the maintenance and evolution of SBSs. To measure the
change-proneness of a service, in terms of its implementation,
we rely on two widely used effort metrics: (1) number of
changes and (2) code churns; which capture the frequency
and the size of changes on a service. We address the following
three research questions:

RQ1: What is the relation between service patterns and
change-proneness?
Finding: The total number of source code changes and code

2014 IEEE 7th International Conference on Service-Oriented Computing and Applications

978-1-4799-6833-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SOCA.2014.43

1

2014 IEEE 7th International Conference on Service-Oriented Computing and Applications

978-1-4799-6833-6/14 $31.00 © 2014 IEEE

DOI 10.1109/SOCA.2014.43

1



churns performed during the maintenance and evolution of
services involved in patterns is less than the total number
of source code changes and code churns performed in other
services—the difference is not statistically significant.
RQ2: What is the relation between service antipatterns and
change-proneness?
Finding: The total number of source code changes and code
churns performed during the maintenance and evolution of
services involved in antipatterns is higher than the total
number of source code changes and code churns performed
on other services—the difference is statistically significant.
RQ3: What is the relation between particular kinds of service
antipatterns and change-proneness?
Finding: Services found to be involved in God Component,
Multi service, and Service Chain antipatterns are more
change-prone than services involved in other antipatterns—the
difference is statistically significant.

We examined the confounding impact of OO code smells
contained in the implementations of the services, by comparing
the proportion of code smells in the implementations of service
patterns and antipatterns. Results show that the implementa-
tions of service antipatterns contain significantly more code
smells than the implementations of service patterns. Hence,
the higher change-proneness observed for service antipatterns
implementations is likely due in part to the presence of code
smells, since previous studies have found code smells to be
more change-prone than codes that do not contain any smell. In
summary, service antipatterns (respectively patterns)—which
indicate poor (respectively good) service designs—do not only
affect the clients of SBSs but also the cost of maintenance
of the SBSs themselves. Developers and maintainers should
therefore avoid implementing antipatterns in their SBSs since
it will significantly increase the maintenance effort and hence
the maintenance cost of the system.

The remainder of this paper is organised as follows. Section
II presents background information on the FraSCAti project.
Section III describes the approach used to extract change and
churn information, and to identify FraSCAti services involved
in patterns and antipatterns, and the design of our study. We
present the findings in Section IV. Section V discusses the
confounding effect of code smells while Section VI reports
the threats to the validity of our results. Finally, Section
VII presents related work followed by Section VIII, which
concludes and sketches future work.

II. FRASCATI

FraSCAti [12] is a Java-based open-source implementation
of the Service Component Architecture (SCA) standard [13].
FraSCAti is based on the OW2 Fractal1 component model and
provides an open architecture for the integration and binding of
SCA components. SCA defines a technology-agnostic model
for composing diverse interface definition languages (WSDL,
Java, WADL, etc.), implementation languages and frameworks
(Java, BPEL, C/C++, Spring, OSGi, etc.), bindings (SOAP,
JMS, REST, etc.). To date, FraSCAti is the largest service-
oriented SCA system for which the source code and change
commits are publicly available. Table I summarises the main
attributes of the FraSCAti project for its entire revision history.

1http://fractal.ow2.org/

FraSCAti offers 130 distinct services. The size of the FraSCAti
project is around 170 KLOC excluding any supporting and
configuration files. We collected more than 15,000 changed
files from the entire FraSCAti revision history, more than 9,000
of which are Java source files. The patterns and antipatterns
studied in this paper were detected for 62 services, thus around
3,700 Java source files were involved directly or indirectly
with these services implementations. Moreover, a few more
than 1,800 and 2,100 analysed Java source files were directly
involved with the studied patters and antipatterns in [5] and
[14], respectively. As shown in Table I, we extracted more than
71,000 changes and approximately 62.6 million code churns
from the entire FraSCAti commits.

III. STUDY DESIGN

This section presents the design of our study, which aims
to address the three research questions stated in Section I.

Figure 1. An overview of our approach to study the impact of service patterns
and antipatterns on the change-proneness of SBSs.

A. Data Collection and Processing

In this study, we analyse FraSCAti services over their entire
revision history. Our data set contains, for each FraSCAti
service: (1) all the source code changes performed and (2)
the code churns in its entire revision history. We also gather
the type and the number of service patterns and antipatterns in
which a FraSCAti service is involved, using SODOP [5] and
SODA [14] detection techniques. Figure 1 shows an overview
of our data collection and processing approach. The remainder
of this section elaborates on each of its steps.

1) Step 1: Collecting Mailing Data: The first step con-
sists in mining change data information from the com-
plete FraSCAti-commits mailing list archives. The FraSCAti-
commits mailing list archive is available online2. We developed
a Python script to recursively download all the change histories
for the entire FraSCAti project. For each commit message in
the mailing list, we extract (1) the revision number, (2) the
author, (3) the date of the commit, (4) the log message, (5)

2http://mail-archive.ow2.org/
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Table I. SUMMARY OF THE CHARACTERISTICS OF THE FRASCATI PROJECT V1.4 (THE ENTIRE REVISION HISTORY).

Total Services Total Size Total Changed Files Total Java Source Files Total Changes Total Code Churns
130 170 KLOC 15,863 9,020 71,151 62,676,363

Analysed Analysed Java Java Source Files Java Source Files Java Source Files Java Source Files
Services Source Files Related to Patterns Related to Antipatterns Related to Both Related to None

62 3,717 1,860 2,114 1,840 18

the modified paths, i.e., the list of changed files, (6) the added
paths, i.e., the list of newly added files, (7) the removed paths,
i.e., the list of removed files, and (7) the diff which contains
detailed information about the changes that were performed
on each of the modified, added, or removed files. We stored
all these information in a MySQL database for analysis.

2) Step 2: Extracting Source Code Changes and Code
Churns: The second step involves the extraction of the number
of changes made and the number of code churns for a certain
service artefact. In this case, we also used a Python script
to query our database and calculate the number of times that
each file involved in the implementation of a service appeared
in the commit. For each file and for each commit containing
the file, we parse the diff contained in the commit and extract
information about the number of lines of code that were added
and removed. We use this information to compute the Code
churn of the file for that commit, as the total number of added,
modified and deleted lines of code in the file. In a diff, the
modification of a line is recorded as a line deletion followed
by a line addition. We aggregate the code churns values of the
file obtained for all commits in which the file was involved to
obtain the total code churn of the file.

3) Step 3: Service Patterns and Antipatterns Detection:
The third step in our approach involves detecting service
patterns and antipatterns in FraSCAti. This detection is done
on the client-side by analysing service compositions, system
design, and the quality of service (QoS). We perform the
detection of service antipatterns using SODA (Service Ori-
ented Detection for Antipatterns) [14]. We asked the core
development team of FraSCAti to manually validate all the
antipatterns that were found in FraSCAti before their usage
in our study. We also used the SODOP approach (Service
Oriented Detection Of Patterns) proposed by Demange et al.
[5] to perform the detection of service patterns. The patterns
found in FraSCAti were also manually validated by the core
development team of FraSCAti. A detailed description of the
service antipatterns and patterns analysed in this study is
available at http://sofa.uqam.ca/impact/. Table II shows the
summary of the detection results for service-oriented patterns
and antipatterns in FraSCAti v1.4.

4) Step 4: Data Preparation: Once we extracted the
changes and code churns and performed the detection of ser-
vice patterns and antipatterns, in this last step of our approach,
we grouped the source code changes and code churns to link
them with the detected patterns and antipatterns. In our current
study, we do not consider the types of changes (that we plan
to investigate in the future) and only focus on the number of
changes and code churns as the measures of change-proneness
of a service implementation.

We map each service to the corresponding artifacts or
source files from the entire FraSCAti project in the form of
si→f 1 to k, where for each i from 1 to 130, a service s is

Table II. SUMMARY OF THE DETECTION RESULTS FOR

SERVICE-ORIENTED PATTERNS AND ANTIPATTERNS IN FRASCATI V1.4.

Names Detected Instances Involved Java Source Files

P
at

te
rn

s Adapter 1 14
Basic Service 5 54
Facade 3 62
Proxy 3 61

A
n
ti

p
at

te
rn

s

Bloated Service 3 25
Bottleneck Service 2 24
God Component 2 4
Multi Service 1 5
Nobody Home 4 12
Service Chain 3 10
The Knot 1 24
Tiny Service 1 24

OO Code Smells 26,381 3,717

associated with different numbers of artefacts or source files
f up to k. We classify the entire FraSCAti project into three
groups: (1) Java source files that underwent any number of
changes and are part of any patterns or antipatterns, (2) Java
source files that underwent any changes and are not related
to any patterns or antipatterns, and (3) Java source files that
did not undergo any changes. This classification helps us to
restrain relevant source files while we compare among changed
vs. unchanged and pattern vs. antipattern service groups. We
also manually gather various details about the patterns and
antipatterns considered in this study, e.g., their categories,
the levels of their appearance, root causes, and symptoms.
Finally, we collected the feature details from the FraSCAti
feature model3 for each FraSCAti service, i.e., which particular
features are implemented by a service in FraSCAti. This
feature information helps us to better understand the changes
made in services that are involved in patterns or antipatterns.
Using these data, we perform a series of statistical analysis to
examine the relation between service patterns/antipatterns and
change-proneness. The following sections discuss the details
of our analysis method.

B. Variable Selection

We identify the following dependent and independent
variables to test the null hypotheses (defined in Section IV)
corresponding to each research question.

1) Independent Variables: The total set of service patterns
and antipatterns that we considered in this study are the
independent variables. We investigate the presence of eight
different service antipatterns and four different service patterns.
For RQ1, we use the boolean variable f 1i to indicate whether
a file i was involved in the implementation of at least one
pattern. For RQ2, we use a similar boolean variable f 2i to
indicate whether a file i was involved in the implementation
of at least one antipattern. Finally, for RQ3, we use the boolean
variables f 3i,j to indicate whether a file i was involved in the
implementation of the antipattern j.

3http://frascati.ow2.org/doc/1.4/ch12s02.html
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2) Dependent Variables: The dependent variables measure
the phenomena related to services participating in service
antipatterns or patterns. Our dependent variable for research
questions RQ1 to RQ3 is the change-proneness of the files
involved in the implementation of a service. We measure the
change-proneness of a file i using the total number of changes
ci and the total number of code churns di that the file i
underwent in its entire revision history.

C. Analysis Method

We apply the Wilcoxon rank sum and Kruskal-Wallis tests
[15] to compare the proportion of source code changes and
code churns in the different categories of services (i.e., service
antipatterns, service patterns, and others), using a 95% confi-
dence level (i.e., p-value<0.05). For any comparison exhibiting
a statistically significant difference, we further compute the
Cliff’s δ effect size [16] to quantify the importance of the
difference because Cliff’s δ is reported to be more robust and
reliable than Cohen’s d [17].

The Wilcoxon rank sum test is a non-parametric statistical
test to assess whether two independent distributions have
equally large values. Non-parametric statistical tests make no
assumptions about the distributions of assessed variables. The
Kruskal-Wallis test is an extension of the Wilcoxon rank sum
test for more than two groups. Cliff’s δ is a non-parametric
effect sizes measure (i.e., it makes no assumptions of a
particular distribution) which represents the degree of overlap
between two sample distributions [16]. It ranges from -1 (if
all selected values in the first group are larger than the second
group) to +1 (if all selected values in the first group are
smaller than the second group). It is zero when two sample
distributions are identical [18].

IV. CASE STUDY RESULTS

In this section, we present and discuss the answers to
our three research questions. For each research question,
we present the motivation behind the question, our analysis
approach, and a discussion on our findings.

RQ1: What is the relation between service patterns and
change-proneness?

Motivation: The SOA paradigm has a specific set of design
principles associated with it. Over the past years, patterns
for SOA (i.e., service patterns) have been proposed to guide
developers through the application of these design principles,
in order to help them reap the benefits of SOA, which includes
fast and cost-effective responses to changes [19]. Each SOA
service pattern affects and influences the application of one or
more SOA design principles. There are also adverse relation-
ships, where the results and trade-offs of some service patterns
have a negative impact on a design principle [2]. A violation
of some design principles can in turn result in a degradation
of the quality of the SBSs. A better understanding of relations
between service patterns and SBSs software quality is therefore
important to guide development teams in making good design
decisions. Yet, to date, no empirical evidence is available to
validate the positive or negative impact of service patterns on
the quality of SBSs. In this research question, we investigate
the effect of service patterns on code change-proneness. Code

change-proneness is an important quality attribute since it
captures the effort required to modify and evolve the code
of the SBSs, which translates into maintenance costs.
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Figure 2. Comparison between pattern services and non-pattern services in
terms of number of changes (top) and code churns (bottom).

Approach: We answer this research question in three steps:
First, we perform the detection of service design patterns using
SODOP [5] and obtain a set of FraSCAti services involved
in different design patterns. We manually validate the results
of our detection as discussed in Section III-A. Next, for each
file implementing a FraSCAti service, we measure the change-
proneness of the service’s implementation using the following
two metrics:

• Total number of changes: the total number of times
that the file was changed in its entire revision history.

• Total number of code churns: the total number of
churns (i.e., lines added, deleted, and modified) that
the file underwent in its entire revision history.

To compare the change-proneness of files involved in the
implementation of service patterns with the change-proneness
of files implementing services that are not involved in a pattern,
we test the two following null hypotheses:

H1
01: there is no difference between the total number of changes

experienced by files involved in the implementation of a service
pattern and other files.

H2
01: there is no difference between the total number of code

churns experienced by files involved in the implementation of
a service pattern and other files.

We use the Wilcoxon rank sum test to examine H1
01 and

H2
01. H1

01 and H2
01 are two-tailed since they investigate whether

service patterns are related to higher or lower change and
code churn rates. All the tests are performed using the 5%
significance level (i.e., p-value< 0.05).
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Findings: Services involved in service patterns are less
change-prone than the services not involved in any service pat-
tern, but not at statistically significant level. Figure 2 presents
the box-plots showing the median difference between pattern
services and non-pattern services, both for the total number of
changes (top) and the total number of code churns (bottom). In
Figure 2, we observe the difference between the median values
of the two groups. However, this difference is not statistically
significant as the Wilcoxon rank sum test yielded p-values
of 0.487 (>0.1) and 0.603 (>0.1), for respectively the total
number of changes and the total number of code churns (see
Table III). The Cliff’s δ effect size values presented in Table
IV also show a negligible difference.

Table III. THE WILCOXON RANK SUM TEST BETWEEN SERVICE

PATTERNS AND OTHER SERVICES.

Treatment Groups Treatment Types p-value

patterns ∼ non-patterns total number of changes 0.487
patterns ∼ non-patterns total number of code churns 0.603

Table IV. THE NON-PARAMETRIC CLIFF’S δ EFFECT SIZE MEASURE

BETWEEN SERVICE PATTERNS AND OTHER SERVICES.

Treatment Groups Treatment Types Cliff’s δ
patterns ∼ other-services total number of changes -0.075 (negligible)
patterns ∼ other-services total number of code churns -0.075 (negligible)

RQ2: What is the relation between service antipatterns and
change-proneness?

Motivation: In RQ1, we found that the services involved
in patterns are less change-prone (although, not statistically
significant) than other services (which is a positive impact).
Since service antipatterns represent poor designs, it is very
likely that they negatively impact the quality of SBSs, for
example by making them more prone to changes, which may
result in an increase of maintenance costs. Clearing up the
interaction between service antipatterns and change-proneness
is important from both researchers’ and practitioners’ points
of view. For researchers, a quantitative analysis of the impact
of service antipatterns on change-proneness will contribute
to proving or refuting the conjecture about their negative
impact. For practitioners, knowing how service antipatterns
affect the change-proneness of their code will help them make
educated decisions about which antipattern to remove first.
In this research question, we investigate the effect of service
antipatterns on code change-proneness.

Approach: Similar to RQ1, we answer this research question
in three steps: First, we perform the detection of service
antipatterns using SODA [14] and obtain a set of services
involved in different antipatterns. We manually validated the
results of our detection as discussed in Section III-A. Next,
for each file implementing a FraSCAti service, we measure
the change-proneness of the service’s implementation using
the same metrics as in RQ1 (i.e., total number of changes and
total number of code churns). Finally, to compare the change-
proneness of files involved in the implementation of service
antipatterns with the change-proneness of files implementing
services, but not involved in a service antipattern, we test the
two following null hypotheses:

H1
02: there is no difference between the total number of changes
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Figure 3. Comparison between antipattern services and non-antipattern
services in terms of number of changes (top) and code churns (bottom).

experienced by files involved in the implementation of a service
antipattern and other files.

H2
02: there is no difference between the total number of code

churns experienced by files involved in the implementation of
a service antipattern and other files.

Similar to RQ1, we use the Wilcoxon rank sum test to
examine H1

02 and H2
02, which are also two-tailed since they

investigate whether service antipatterns are related to higher
or lower change and code churn rates. For any comparison
exhibiting a statistically significant difference, we compute
the Cliff’s δ effect size [16] to quantify the importance of
the difference. All the tests are performed using the 5%
significance level (i.e., p-value<0.05).

Findings: Services involved in service antipatterns are more
change-prone than the services that are not involved in any
service antipattern. Figure 3 presents the box-plots showing
the median difference between antipattern services and non-
antipattern services both for the total number of changes (top)
and the total number of code churns (bottom). This difference
is statistically significant as the Wilcoxon rank sum test yielded
p-values of 0.011 (<0.05) and 0.015 (<0.05) for respectively
the total number of changes and the total number of code
churns (see Table V). Therefore, we reject both H1

02 and H2
02.

The Cliff’s δ effect size values presented in Table VI shows
that the difference is large for both the total number of changes
and the total number of code churns (p-value <0.01).

RQ3: What is the relation between particular kinds of service
antipatterns and change-proneness?

Motivation: In this research question, we investigate whether
certain kinds of service antipatterns are more change-prone
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Table V. THE WILCOXON RANK SUM TEST BETWEEN SERVICE

ANTIPATTERNS AND OTHER SERVICES.

Treatment Groups Treatment Types p-value

antipatterns ∼ non-antipatterns total number of code churns 0.015
antipatterns ∼ non-antipatterns total number of changes 0.011

Table VI. THE NON-PARAMETRIC CLIFF’S δ EFFECT SIZE MEASURE

BETWEEN SERVICE ANTIPATTERNS AND OTHER SERVICES.

Treatment Groups Treatment Types Cliff’s δ
antipatterns ∼ non-antipatterns total number of code churns 0.515 (large)
antipatterns ∼ non-antipatterns total number of changes 0.496 (large)

than others. Knowing which service antipatterns are more
change-prone could help development teams and managers
better focus their limited resources toward the correction of the
most change-prone antipatterns, thereby reducing the mainte-
nance cost of their SBSs. Researchers working on antipatterns
detection tools could also use this information to prioritise the
results of their detection tools and guide their users toward
service antipatterns with high change-proneness.
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Figure 4. Comparison among antipattern services in terms of total number
of changes (top) and code churns (bottom).

Approach: To answer this research question we proceed as
follows: First, using the results of the antipattern detection
performed in RQ2, we divide the files involved in the imple-
mentation of service antipatterns in different categories corre-
sponding to the 13 kinds of antipatterns that are considered in
this study. For each kind of antipattern Ai, we create a group
GAi containing files that are involved in the implementation
of an antipattern of type Ai. In total, we obtained eight groups
of files (GAi, i ∈ {1, . . . 8} since only eight kinds of service

antipatterns were detected and validated in FraSCAti. We also
create a group GNoAP containing files implementing services
that are not antipatterns. Next, for each file implementing a
FraSCAti service, we measure the change-proneness of the
service’s implementation using the same metrics as in RQ1

and RQ2 (i.e., total number of changes and total number of
code churns). Finally, to compare the change-proneness of files
involved in the implementation of different kinds of service
antipatterns with the change-proneness of files implementing
services that are not antipatterns, we test the two following
null hypotheses:

H1
03: there is no difference between the total number of changes

experienced by files from groups (GAi)i∈{1,...8} and GNoAP .

H2
03: there is no difference between the total number of code

churns experienced by files from groups (GAi)i∈{1,...8} and
GNoAP .

We use the Kruskal-Wallis test to examine H1
03 and H2

03.
The two hypotheses are two-tailed (as in RQ1 and RQ2).
We test H1

03 and H2
03 using the 5% significance level (i.e.,

p-value<0.05).

Findings: The eight kinds of antipatterns investigated in this
study are not equally change-prone. Figure 4 presents the box-
plots showing the medians of the total number of changes
(top) and total number of code churns (bottom) in the nine
groups (eight groups for the eight kinds of antipatterns and
the no antipattern group). The result of the Kruskal-Wallis
test presented in Table VII suggests that the difference is
statistically significant. Hence, we reject both H1

03 and H2
03.

From Figure 4, we observe that God Component (GC), Multi
service (MS), and Service Chain (SC) antipatterns have code
churn values greater than 4000, while most other kinds of
antipatterns have churn values less than 2000. As for the
number of changes, the highest median value for a kind of
antipattern is between 160 and 230. Overall, God Component,
Multi service, and Service Chain antipatterns are more change-
prone than other kinds of antipatterns.

Table VII. KRUSKAL-WALLIS TEST FOR THE DIFFERENT KINDS OF

SERVICE ANTIPATTERNS.

Test Types p-value
total number of code churns ∼ antipattern 0.0002
total number of changes ∼ antipattern 0.01003

We now discuss the possible reasons behind the high
change-proneness of these three kinds of antipatterns. The ser-
vice ComponentFactory, identified as Service Chain [14]
and God Component [14] antipattern, is implemented by the
component-factory FraSCAti component. The main role
of this service is to generate and instantiate SCA components,
which is one of the major steps to execute an SCA application.
When an SCA application executes, it follows several sequen-
tial steps, including loading the SCA configuration file, parsing
it, instantiating the SCA components, resolving the bindings,
and so on. Therefore, the ComponentFactory service is in
that invocation chain and highly related to other collaborating
services. Because of this strong dependency, if others change,
there is a high possibility that this ComponentFactory
will also change frequently. Being a God Component, the
ComponentFactory service also has a high number of
encapsulated services with many methods and parameters.
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The service MembraneGeneration, identified
as Multi Service antipattern, is implemented by the
component-factory-juliac FraSCAti component. The
MembraneGeneration service wraps SCA components
with the help of ComponentFactory service, in this way
it helps each SCA components to be treated as an individual
entity. According to the specification of Multi Service [14],
we found that the MembraneGeneration service had a
high number of low cohesive methods defined in its interface,
which might cause its frequent and large changes. Among
the less change-prone antipatterns: Bottleneck Service (BotS),
The Knot (TK), and Tiny Service (TS) show the very low
number of changes and code churns. Also, the Bloated
Service (BlS) antipattern change with a significant variation,
i.e., large interquartile range, in the number of changes and
code churns. Based on these findings, development teams
could decide to prioritise the code of services involved in the
Service Chain (SC), Multi Service (MS), and God Component
(GC) antipatterns, for special reviews and refactoring, since
as shown in Figure 4, they have a high change-proneness. We
have also investigated the change-proneness of the four kinds
of service patterns found in FraSCAti (i.e., Basic service,
Adapter, Facade, and Proxy pattern) and did not find a
statistically significant difference between them. Overall, as
shown in RQ1, the services involved in service patterns are
less change-prone than other services.

V. SERVICE PATTERNS, ANTIPATTERNS AND

OBJECT-ORIENTED CODE SMELLS

Since previous studies [20], [21] have reported that classes
containing object-oriented (OO) code smells change more
frequently than other classes, we examine the potential con-
founding impact of the OO code smells contained in the imple-
mentations of the services. For each Java class implementing
a FraSCAti service, we perform a detection of code smells
using the well-known source code analyser PMD [22]. PMD
is capable of identifying a large set of code smells based on
more than 300 pre-defined rules. The main benefit of using
PMD is its support for the analysis of uncompiled source
code. We performed a Wilcoxon rank sum test between the
different groups of Java classes, i.e., (1) antipattern-classes
vs. pattern-classes, (2) antipattern-classes vs. non-antipattern
classes, and (3) pattern-classes vs. non-pattern classes and
obtained statistically significant results for pattern and non-
pattern classes (see Table VIII).

Table VIII. WILCOXON RANK SUM TEST FOR DIFFERENT GROUPS.

Comparison Classes p-value
antipattern classes ∼ pattern classes 0.066
antipattern classes ∼ non-antipattern classes 0.071
pattern classes ∼ non-pattern classes 0.018

Findings: In FraSCAti, the implementations of service an-
tipatterns contain significantly more code smells than the
implementations of service patterns, and other services.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our
study based on the guideline in [23]. Construct validity threats
refer to the relation between theory and observation, which
is apparent by the measurement errors. The identification of

changes and code churns in this study is reliable because we
rely on the FraSCAti mailing list archives. In this study, we
only look for the number of changes and code churns for a
service artefact. We plan to investigate and quantify the types
of changes in the future. SODOP [5] and SODA [14] reflect
their authors’ subjective understanding of the service patterns
and antipatterns, but they have good detection accuracy. More-
over, the service patterns and antipatterns instances used in this
study were manually validated by the developers of FraSCAti,
which minimises the threats to construct validity. However,
other tools and techniques should be used to confirm our
findings. Internal validity threats concern the smell detection
accuracy of the PMD tool [22]. We relied on PMD because
of its effectiveness in detecting code smells and duplicate
codes [24]. PMD has the detection precision of more than
60% and the recall of more than 90% [25]. Another threat to
this validity that might affect us, in RQ1, for some service
patterns we had very few data points. We did not investigate
the reason of the introduction of service patterns or antipatterns
analysed in SODOP [5] and SODA [14]. The threats to
reliability validity concern the possibility of replicating this
study. To minimise this threat, we provide all the details
required to replicate the study, including the source code
repositories and the raw data used to compute the statistics on
our website4.External validity threats concern the possibility
to generalise our findings. Further validation should be done
on other service-based systems (SBSs) to better analyse the
impact of service patterns and antipatterns on the change-
proneness. One major challenge to minimise the threat to the
external validity is the very limited availability of open-source
SBSs. The FraSCAti project that we have studied is the largest
open-source SBS available presently. It contains 130 services
and 91 SCA components. Also, we have used a representative
set of service patterns and antipatterns in our study.Finally,
the conclusion validity threats refer to the relation between
the treatment and the outcome. We paid full attention not to
violate the assumptions of the performed statistical tests. We
mainly used non-parametric tests that do not require making
any presumption about the data distribution.

VII. RELATED WORK

In this section, we discuss the relevant literature on service
patterns and antipatterns in relation to the maintenance of
service-based systems (SBSs).

A number of studies have been done for the detection of
service patterns and antipatterns in SBSs [5], [6], [7], [8].
For example, Tsantalis et al. [8] used a data mining-based
approach to detect behavioral patterns by analysing execution
traces. Di Penta et al. [7] followed a model checking-based
approach for the detection of service patterns where the authors
built the models from the SOAP messages exchanged between
services. In another recent work, Demange et al. [5] performed
the detection of five service patterns in SCA systems relying
on the rule-based SODOP approach. Several works exist in
the OO literature associating code smells and antipatterns
with the change- and fault-proneness [9], [10], [11]. However,
these studies are not replicable on SBSs due to several facts,
including: (1) SOA is concerned with services as building
blocks, whereas OO is concerned with classes, i.e., services

4http://sofa.uqam.ca/impact/
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are coarser than classes in terms of granularity—composed
of many classes; (2) OO development mainly focuses on
marshalling parameters, while SO development mostly han-
dles request-response payloads; (3) interface development and
description in OO are mostly middleware specific, on the other
hand, for SO programming, it is mostly protocol specific; and,
finally (4) OO development deals with homogeneous platforms
and execution environments, whereas SO development deals
with heterogeneous platforms and distributed execution envi-
ronments. All these non-trivial differences between OO and
SBSs development make it infeasible to replicate early OO
studies on the SBSs. Therefore, new studies are required to
relate service patterns and antipatterns to the maintenance, e.g.,
the change-proneness, of SBSs.

VIII. CONCLUSION AND FUTURE WORK

This paper reports on the results of an empirical study
aimed at quantifying the impact of service patterns and an-
tipatterns on the change-proneness of service-based systems
(SBSs). We have performed the detection of five service pat-
terns and 13 service antipatterns using SODOP [5] and SODA
[14], respectively, and answered three research questions RQ1

to RQ3. Results show that the services involved in patterns,
in terms of their implementations, are less change-prone than
other services; however, this difference is not statistically
significant (RQ1). Results also show that the services involved
in antipatterns, in terms of their implementations, are more
change-prone than the services that are not involved in any
antipattern (RQ2). The services involved in God Component,
Multi service, and Service Chain antipatterns, in terms of
their implementations, are more change-prone than services
involved in other kinds of service antipatterns (RQ3). More-
over, we observed a strong correlation between object-oriented
code smells and service patterns and antipatterns—the imple-
mentations of service antipatterns contain significantly more
code smells than the implementations of service patterns, and
other services.

Future work includes replicating this study on other SBSs
and with different service patterns and antipatterns. However,
one major challenge is the availability of open-source SBSs.
We are also interested in investigating the types of changes
made in each FraSCAti commit and their impact on service
patterns and antipatterns. Furthermore, we want to explore,
using FraSCAti bug reports, the possible relation between
service patterns/antipatterns and fault-proneness.

ACKNOWLEDGMENT

The study is supported by NSERC and FRQNT grants.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, August 2005.

[2] ——, SOA Design Patterns. Prentice Hall PTR, January 2009.

[3] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf, J2EE AntiPat-
terns. John Wiley & Sons Inc, August 2003.

[4] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley, Novem-
ber 2011.

[5] A. Demange, N. Moha, and G. Tremblay, “Detection of SOA Patterns,”
in Service-Oriented Computing, ser. Lecture Notes in Computer Sci-
ence, S. Basu, C. Pautasso, L. Zhang, and X. Fu, Eds., vol. 8274.
Springer Berlin Heidelberg, 2013, pp. 114–130.

[6] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Guéhéneuc,
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