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Abstract—In rapid release development processes, patches that
fix critical issues, or implement high-value features are often
promoted directly from the development channel to a stabilization
channel, potentially skipping one or more stabilization channels.
This practice is called patch uplift. Patch uplift is risky, because
patches that are rushed through the stabilization phase can end
up introducing regressions in the code. This paper examines
patch uplift operations at Mozilla, with the aim to identify the
characteristics of uplifted patches that introduce regressions.
Through statistical and manual analyses, we quantitatively and
qualitatively investigate the reasons behind patch uplift deci-
sions and the characteristics of uplifted patches that introduced
regressions. Additionally, we interviewed three Mozilla release
managers to understand organizational factors that affect patch
uplift decisions and outcomes. Results show that most patches
are uplifted because of a wrong functionality or a crash. Uplifted
patches that lead to faults tend to have larger patch size, and
most of the faults are due to semantic or memory errors in the
patches. Also, release managers are more inclined to accept patch
uplift requests that concern certain specific components, and–or
that are submitted by certain specific developers.

Index Terms—Patch uplift, Urgent update, Mining software
repositories, Release engineering

I. INTRODUCTION

The advent of continuous delivery and rapid release prac-

tices have significantly reduced the amount of stabilization

time available for new features, forcing companies to resort

to innovative techniques to ensure that important features are

released to the public, in a timely manner and with a good

quality. To cope with short release cycles, Mozilla has re-

organized its release process around four channels: a devel-

opment channel named Nightly, two stabilization channels

(Aurora and Beta), and a main Release channel. Features

corresponding to a new release are developed on the Nightly

channel over a period of six weeks. After that, the code is

transferred to Aurora, where it is tested by Mozilla developers

and contributors, for a period of six weeks, and then to Beta

where it is tested by a selected group of external users. Finally,

mature Beta features are imported into the main Release chan-

nel and delivered to end users. This pipelined process allows

Mozilla to avoid mixing the development of new features

with the stabilization process, which is particularly important

given that integration operations are unpredictable [1], and can

significantly delay a release process, if not enough time is

allowed for stabilization. However, this well organized release

process is frequently subverted by urgent patches, implement-

ing high-value features or critical fixes, that cannot wait for

the next release train. These features and fixes are directly

promoted from the development channel to stable channels

(i.e., Aurora, Beta, and main Release), a practice called patch
uplift. Patch uplift is risky because the time allowed for the

stabilization of uplifted patches is reduced by six weeks for

each skipped channel. Therefore, it is important to carefully

pick the patches that are uplifted and ensure that developers

scrutinize them properly, to reduce the risk of regressions.

There are a set of rules in place at Mozilla to govern this

uplift process. One of these rules is that patches uplifted to

the Beta channel should be (1) ideally reproducible by the
QA team, so that they can be verified; (2) should have been
verified on Aurora/Nightly first; and (3) should not contain
string changes (i.e., changes in the text which is visible to
users). However, despite these rules, multiple uplifted patches

still introduce regressions in the code. Hence, it is unclear if–

and–how the rules are enforced at Mozilla and why certain

uplifted patches introduce post-release bugs.

In this paper, we conduct a series of quantitative and

qualitative analyses to understand the decision making process

of patch uplift at Mozilla and the characteristics of uplifted

patches that introduce regressions. Overall, we analyze 33,664

issue reports (corresponding to 7,267 uplift requests) in 17

versions of Firefox over a period of two years and answer the

following research questions:

RQ1: What are the characteristics of patches that are
uplifted?

We observe that most patches are uplifted to resolve wrong

functionalities or crashes. Rejected uplift requests required

longer decision time than accepted requests. We attribute

this difference to the high complexity of these rejected

patches (since complex patches require longer time for

risk assessment). Last but not least, release managers tend

to trust patches that concern certain specific components,

and–or that are submitted by certain specific developers.

RQ2: What are the characteristics of uplifted patches that
introduced faults in the system?

From our analysis, we observe that uplifted patches that

lead to faults tend to have larger patch size; suggesting

that developers and release managers need to carefully
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review patch candidates for uplift with a large amount

of changes, before allowing for their uplift. Most faulty

uplifts are due to semantic or memory-related errors. We

also observed that patches related to certain components

and–or submitted by certain developers are more likely to

cause faults.

The remainder of this paper is organized as follows.
Section II provides background information about patch uplift.

Section III describes the design of our case study. Section IV

presents the results of the case study, and Section V elaborates

on the implications of these results. Section VI discusses

threats to the validity of this study. Section VII summarizes

related works, and Section VIII concludes the paper.

II. MOZILLA PATCH UPLIFT PROCESS

This section describes the Mozilla patch uplift process and

the rules governing this process.

Firefox follows a pipelined release process [2], with four

release channels (Nightly, Aurora, Beta, and Release). New

feature work is done on the Nightly channel, while Aurora and

Beta serve as stabilization channels, and the Release channel

is used to deliver the software to end users. Every six weeks,

there is a merge day, when the code from a less stable channel

flows into a more stable one (e.g., the Nightly code is moved

in the Aurora repository). Most of the development work

is performed in the Nightly channel, where patches can be

committed after a normal review process. For the stabilization

channels, a different process for committing patches has been

put in place (i.e., patch uplift), to keep the channels as stable

as possible (as code committed to Aurora and Beta is closer

to be released to users). Patches with important features or

severe fault fixes that cannot wait for the entire process are

promoted directly from the development channel to one of

the stable channels, skipping the stabilization phase on one or

more channels.

The lifecycle of an uplifted patch can be summarized as

follows: developers write a patch, which gets reviewed by

one or more reviewers. After a successful review, the patch

is committed to the Nightly channel. If developers (or other

stakeholders) believe that the patch is particularly important

(e.g., it fixes a frequent crash, or a performance issue), they

can ask for approval to uplift the patch to one (or more) of

the stable channels, i.e., Aurora, Beta, or Release.

Release managers (who are independent and different from

reviewers) are responsible for deciding which patches can be

uplifted. They can either accept or reject the patch uplift

request, after a careful consideration of the risks involved.

The more a channel is stable, the higher is the bar for

approval of uplift requests. Below we present an excerpt of

the rules in place at Mozilla on the different channels.

Aurora: Uplifts to the Aurora channel are less critical, as they

still have considerable time for stabilization. The rules are not

strict in this case: no new features are accepted; no disruptive

refactorings; no massive code changes; no string changes,

unless the localization team is aware and has approved; they

must be accompanied, if possible, by automated tests.

Beta: Uplifts to the Beta channel are more critical, as they have

less time for stabilization. In addition to the rules outlined for

Aurora, the changes uplifted to the Beta channel should be

(1) ideally reproducible by QA, so that they can be verified;

(2) they should have been verified on Aurora/Nightly first; and

should not contain (3) changes to the user-visible strings in the

application (as those require a very high effort and time to be

localized, since Mozilla relies on volunteer contributors). The

uplifted changes can be proven performance improvements,

fixes to important crashes, fixes for recent regressions. The

closer to the release date, the stricter the release managers

should be in enforcing the rules.

Release: Uplifts to the Release channel are generally discour-

aged, as they require a new version to be built and released to

users. Possible uplifts are fixes for major top crashes, security

issues, functional regressions with a very broad impact.

Once a patch is accepted for uplift, Tree Sheriffs [3] (i.e.,
engineers responsible for supporting developers in committing

patches and ensuring that the automated tests are not broken

after commits, monitoring intermittent failures and backing out

patches in case of test failures) or the developers themselves

can commit it to the stabilization channel(s) for which the

patch was approved.

III. CASE STUDY DESIGN

In this section, we describe the data collection and analysis

approaches that we use to answer our two research questions.

A. Data Collection

We collect, from the Mozilla issue tracking system

(Bugzilla), all issues marked as resolved or verified in the

Firefox and Core products between July 2014 (release date of

Firefox 31.0) and August 2016 (release date of Firefox 48.0).

In total, there are 35,826 issue reports in our dataset.

Mozilla developers use customized Bugzilla flags to

request for patch uplifts. These flags have the form

approval-mozilla-CHANNEL, where CHANNEL can be

Aurora, Beta, or Release. The postfix of the flag is set to a

question mark (?) when a developer asks for an uplift, to a

minus sign (-) if the release manager rejects the uplift, and

to a plus sign (+) if the release manager approves the uplift.

We rely on these flags to identify uplifted patches. At Mozilla,

release managers usually inspect all patches in an issue report

before deciding whether they can be uplifted together. Thus,

in this work, we consider uplift characteristics at the issue

level. If an issue contains multiple patches, we bundle the

patches together. To study the patch uplift process, we need

to consider a period of time during which the practice was well

established at Mozilla. To decide on this period, we computed

the amount of patches that were uplifted each month, over our

initial period of July 2014 to August 2016. Figure 1 shows the

distribution of the number of uplifts in three Firefox’s release

channels during this period. We do not consider uplifts that

concern the “Pocket” component, as the inclusion of Pocket

(which is a third-party add-on) in Firefox, a one-time event,

might introduce noise in our data. In Figure 1, each time point
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Figure 1: Number of uplifts during each month from July 2014

to August 2016. Periods with low number of uplifts or not

covering all the three channels are removed.

Version Control 
System 

(Mercurial)

Quantitative & 
qualitative 
analyses

RQ1

RQ2

Bug Repository 
(Bugzilla)

Source code metrics

Extract patches

Commit logs

Bug reports

Identify fault-
related issues

Identify fault-
inducing patches

Identify uplifted 
reports

Developer & 
sentiment 

metrics

bu
g 

co
m

m
it

 m
ap

pi
ng

bbuu
gg

co
mm

mm
t

mm
app

ppi
nggg

Figure 2: Overview of our data processing approach.

represents a period of one month (we can see that the Release

channel did not receive any uplift in May and November

2015). Figure 1 shows that the number of uplifted patches

increased from July 2014 to August 2014 and then became

stable from September 2014 to August 2016. Based on this

distribution, we selected the period between September 2014

and August 2016, for our study. In other words, we limited our

dataset to only issue reports and commits that occurred within

this period. Between September 2014 and August 2016, we

study in total 33,664 issue reports, in which there are 7,267

uplift requests: 285 to Release, 2,614 to Beta, and 4,368 to

Aurora.

B. Data processing

Figure 2 shows a general overview of our approach. We

describe each step of the approach below. The corresponding

data and scripts are available online at: https://github.com/

swatlab/uplift-analysis.

1) Identification of Fault-related Issues: Mozilla uses

Bugzilla to manage and track its issues. All types of issues,

whether they are faults or new features, are managed in

this system. Unlike JIRA [4], which offers the possibility

to distinguish between issues using a tag, Bugzilla does not

provide issue type information. Therefore, our first processing

task is to differentiate issues that are related to faults, from new

feature requests or improvements. To automatically identify

fault-related issues, we use a keyword-based heuristic to search

information in the title, description, flags, and user comments

of each issue report. Our list of keywords includes: crash,

regression, failure, leak, steps to reproduce (STR), and hang.

The full list is available at: https://github.com/swatlab/uplift-

analysis.

To ensure the accuracy of our detection on fault-related

issues, we manually validated a sample of our results. From a

total of 33,664 issue reports, we randomly selected a sample of

380 issue reports, which corresponds to a confidence level of

95% and a confidence interval of 5%. The first and the second

authors read each of the 380 issue reports independently and

classified them into fault-related and other categories. We then

compared their classification results and observed that 41 issue

reports were classified into different categories by the two

authors. To resolve these discrepancies, we created an online

document for the 41 issues; allowing all of the authors to

comment and discuss the issues. After this round, a consensus

was reached for 35 out of the 41 issues. For the remaining 6

issues, we organized a meeting and discussed the classification

of each of them until a consensus was found. The result of our

manual classification shows that our keyword-based heuristic

achieves a precision of 87.3% and a recall of 78.2%, when

classifying issues into fault-related and other categories.

2) Identification of Fault-inducing Patches: We use the SZZ

algorithm [5] to identify patches (these patches could be fault-

fixing patches or patches related to features or improvements)

that introduced faults in the system. First, we used Fischer

et al.’s heuristics [6] to map each studied issue to its cor-

responding patch(es) (i.e., commits). This heuristic consists

in looking for issue IDs in commit messages using regular

expressions. Next, for each fault-related issue, we use the

following Mercurial command to extract the list of files that

were changed to fix the issue:

hg log --template {commit},{file_mods},{file_dels}
In this step, we only consider modified and deleted lines, since

added lines could not have been changed by prior commits.

We denote an issue’s fault-fixing file by Ffix. Then, for

each changed file ffix | ffix ∈ Ffix, we use Mercurial’s

annotate command as follow to check which prior commits

changed the lines that were modified by the fault-fixing

commits. The SZZ algorithm assumes that the fault is located

in these lines.

hg annotate commitˆ -r f_fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates.

Finally, we examine whether a fault-inducing candidate was

submitted before the creation date of its corresponding fault-

related issue report. If so, we consider the candidate to be

a fault-inducing commit, and its related issue to be a fault-
inducing issue.

3) Mining Issue Reports: We mine several kinds of metrics

from Bugzilla issue reports: information about the review

process (e.g., how long a review took, how many reviewers

inspected a patch), information about the uplift process (e.g.,
whether an uplift was accepted, how long before a release

manager decided to accept or reject an uplift request), the

developer assigned to an issue, and the component(s) affected

by an issue.

4) Computing Metrics: To capture the characteristics of

patches that were uplifted, we computed the 22 metrics

described in Table I. These metrics correspond to the following

five dimensions:

Developer experience and participation metrics. Our ra-

tionale for computing these metrics is that patches written

or reviewed by experienced developers may have a higher

413



Table I: Metrics used to compare patches.

Metric mi Description

Developer experience and participation metrics (m1 - m5)

Developer
experience

1 Number of previous commits of the patch developer.

Reviewer
experience

2 Number of previous commits of the patch reviewer.

Number of
comments

3 Number of comments in the issue report.

Comment
words

4 Average number of words in the comments to an issue.

Review
duration

5 Time period (in days) from a patch’s submission until
its approval.

Uplift process metrics (m6 - m8)

Landing delta 6 Time elapsed (in days) between when the patch was
applied to the Nightly version and when the developer
asked for approval of an uplift.

Response delta 7 Time elapsed (in days) between when the developer
asked for approval for the uplift and when the release
manager decided (approved or rejected).

Release delta 8 Time elapsed (in days) between when the developer
asked for approval for the uplift and the date of the
following release.

Sentiment metrics (m9 - m10)

Developer
sentiment

9 The highest negative sentiment score in the developers’
comments on an issue.

Owner
sentiment

10 The highest negative sentiment score in module owners’
comments on an issue.

Code complexity metrics (m11 - m19)

Patch size 11 Number of lines in a patch (excluding test patches).

Test patch size 12 Number of lines in a test patch.

Prior changed
times

13 Number of previous commits that modified the same
files that the patch is modifying.

LOC 14 Average lines of code in all classes in a patch.

Average
cyclomatic

15 Average cyclomatic complexity of the functions in a
class.

Number of
functions

16 Average number of classes’ functions in a patch.

Maximum
nesting

17 Average maximum level of nested functions in all
classes in a patch.

Comment
ration

18 Average ratio of the lines of comments over the total
lines of code in all classes in a patch.

Module
number

19 Number of modules involved by a patch.

Code centrality (SNA) metrics (m20 - m22)

PageRank 20 Time fraction spent to “visit” a class in a random walk
in the call graph.

Betweenness 21 Number of classes passing through a class among all
shortest paths.

Closeness 22 The average length of the shortest path between a class
and all other classes.

chance to be accepted for uplift, and may be less fault-prone.

Long comments and long review durations may indicate the

complexity of an issue and developers’ uncertainty about it,

which may explain its rejection or fault-proneness.

Uplift process metrics. We compute metrics capturing the

uplift process for the following reasons. Release managers may

be more inclined to accept patches with higher landing delta

(as the more time a patch has been on the Nightly channel, the

more time it has been tested by Nightly users). Patches with

low release delta are likely to be refused uplifts, since patches

that are developed closer to the date of release might pose

more risk (as there is less time to fix potential regressions).

Patches with low response delta may also be rejected (since

developers have less time to evaluate the risks associated with

the patch). Patches with low landing delta, release delta, and

low response delta may also lead to faults if uplifted.

Sentiments. We compute sentiment metrics because we be-

lieve that sentiments can affect uplift decisions and their

success rate. From each studied issue, we extract developers’

comments to compute their sentiments. We leverage the senti-

ment mining tool, SentiStrength [7], to estimate the extent of

developers’ positive and negative sentiments toward a specific

issue. As one of the state-of-the-art sentiment mining tool,

SentiStrength is easy to apply, and it has achieved a reasonable

performance in prior works [7]. In addition to developers’

sentiments, we also computed module owners’ sentiments.

Code Complexity. Previous works, such as [8], have shown

that complex code is likely to introduce faults. We calculate

code complexity metrics to understand how uplifting decisions

and their success are affected by the complexity of the uplifted

patches. We extract the files changed in each patch and

use the static code analysis tool Understand [9] to calculate

the following complexity metrics on the files: lines of code

(LOC), average cyclomatic complexity, number of functions,

maximum nesting, and ratio of the comment lines over the

total code lines.

Code centrality (SNA) metrics. Kim et al. [8] observed that

functions close to the centre of a call graph are likely to

experience more faults. Hence, we compute metrics capturing

the centrality of functions involved in uplifted patches and

uplifted patch candidates. We use the network analysis tool,

igraph [10], in combination to Understand [9], as in [11], to

compute the following Social Network Analysis (SNA) met-

rics: PageRank, betweenness, and closeness. When computing

complexity and SNA metrics, we only consider the C/C++

code since Firefox contains 86% of C/C++ code. Computing

code complexity and SNA metrics is a very time-consuming

task. Instead of computing the metrics for each patch, we

compute metrics by releases and map a given patch to its

latest major release as in our previous work [11]. To make

the metric results as precise as possible, we consider all major

releases from Firefox 32.0 until Firefox 48.0, which cover the

system’s history from September 2014 until August 2016.

IV. CASE STUDY RESULTS

This section presents and discusses the results of our two

research questions. For each question, we discuss the motiva-

tion, the approach designed to answer the question, and the

findings. To get a deeper insight of the patch uplift process,

we perform both quantitative and qualitative analyses for each

research question.

RQ1: What are the characteristics of patches that are uplifted?

Motivation. This question aims to understand the charac-

teristics of patches that are uplifted. We are particularly

interested in understanding what differentiates patch uplifts
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Table II: Accepted vs. rejected patch uplift candidates.

Channel Metric Accepted Rejected p-value Effect size

Aurora Comment ratio 0.1 0.2 0.03 small

Landing delta 0.4 3.0 0.02 small

Response delta 0.9 2.4 1.80e-05 medium

Beta LOC 529.0 1,046.8 9.27e-04 small

Cyclomatic 2.0 3.0 0.04 negligible

# of functions 20.0 35.2 9.62e-04 small

Comment ratio 0.1 0.2 8.86e-05 small

Betweenness 2,789.0 20,586.3 0.01 negligible

PageRank 1.4 1.7 0.01 negligible

Max. nesting 2.3 3.0 7.72e-03 negligible

Module number 1.0 1.0 7.13e-03 negligible

Response delta 0.7 1.0 6.28e-04 small

Release Response delta 0.02 3.1 1.39e-12 large

among different channels. Although Mozilla has published

rules to guide the patch uplift process [12], it is unclear if

and how these rules are enforced in practice. The answer to

this research question can help discover hidden factors that

affect the uplift process, and help software practitioners make

this process more predictable.

1) Quantitative Analysis.

Approach. Using the metrics from Table I, we statistically

compare 22 numerical characteristics of patch uplift candidates

that were accepted and those that were rejected. As Mozilla

release managers take a whole issue report into account during

the uplift process (see Section III-A), we calculate the average

values of the code complexity and SNA metrics for all patches

in a subject issue report.

For each of the 22 metrics mi, we formulate the following

null hypothesis:

H01
i : there is no difference between the values of mi for

patch uplift candidates that were accepted and those that were
rejected, where i ∈ {1, . . . , 22}

We use the Mann-Whitney U test [13] to accept or re-

ject these hypotheses. The Mann-Whitney U test is a non-

parametric statistical test that measures whether two inde-

pendent distributions have equally large values. We use a

95% confidence level (i.e., α = 0.05) to accept or reject the

hypotheses. Since we perform more than one comparison on

the same dataset, to reduce the chances of obtaining false-

positive results, we use Bonferroni correction [14] to control

the familywise error rate. Concretely, we calculate the adjusted

p-value, which is multiplied by the number of comparisons.

Whenever we obtain statistically significant differences be-

tween metric values, we compute the Cliff’s Delta effect

size [15] to measure the magnitude of the difference. Due

to the page limit, we will only report the metrics for which

there is a statistically significant difference between accepted

and rejected patch uplift candidates.

Results. Table II summarizes differences between the char-

acteristics of patches that were accepted for an uplift and those

that were rejected. We show the median value of accepted

and rejected uplifts for each metric, as well as the p-value of

the Mann Whitney U test and the effect size. For all three

channels, rejected uplifts have longer response delta (m7)

than accepted uplifts. We attribute this outcome to the high

complexity of the rejected patches, which required longer time

for risk assessment. We summarize the different results among

the channels as follows:

• Aurora: We observe that rejected uplift requests have

significantly higher landing delta; this might imply that

the rejected patches are landing at the end of the Aurora

cycle, and so have less time for stabilization. Also,

rejected uplift requests have higher ratio of comment

in the source code, although we expected that a higher

comment ratio might help release managers understand

the code. A high comment ratio could also indicate a

high code complexity. Release managers may hesitate to

release patches with complex code ahead of schedule.

• Beta: Compared to accepted patches, rejected patches

tend to have higher code complexity in terms of LOC

and number of functions, as well as higher SNA values

in terms of PageRank. This result is expected, because

we assume that complex code and code connected with

many other classes is less likely to be accepted for urgent

releases. As in the Aurora channel, rejected patches also

contain code with higher ratio of comment. Although

accepted and rejected patches have significant differences

on some other metrics such as cyclomatic complexity, the

magnitude of these differences is negligible.

According to the results, we can only reject H01
7 ,

meaning that the response delta can significantly affect
the decision to uplift a patch or not. The impact of other
metrics, including code complexity and SNA metrics, is
channel dependent.

We quantified the acceptance rate of uplift requests for

different components and observed that certain components

enjoy a 100% acceptance rate (perhaps because they rarely

experienced faults); while other components have lower accep-

tance rates (perhaps because they are inherently more complex,

e.g., the implementation of JavaScript, or because release

managers have had bad experience with some of them). This

difference between the acceptance rates of components is more

pronounced in the Release channel. Some components that

are involved in a large number of uplifts (e.g., Audio/Video,

Graphics, and DOM components) also have the lowest accep-

tance rate. Perhaps developers of those components tend to

ask for uplifts more often, prompting a negative reaction from

release managers who may feel that they take too many risks.

2) Qualitative Analysis. Since we did not observed signif-

icant structural differences between the code of patch uplift

candidates that were rejected and those that were accepted,

we conducted a qualitative study to identify and compare the

reasons behind successful and failed patch uplift requests.

Approach. From 2,384 uplifted issues in the Beta channel

and 231 uplifted issues in the Release channel, we randomly

choose respectively 459 and 154 issues as our samples (which

415



Table III: Uplift reasons and descriptions (abbreviations are

shown in parentheses).

Reason Description

Security Security vulnerability exists in the code.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.

Performance
degradation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong
functionality (func)

Incorrect functionalities besides rendering issues.

Web incompatibil-
ity (web comp)

Program does not work correctly for a major website or
many websites due to incompatible APIs or libraries, or a
functionality, which was removed on purpose, but is still
used in the wild.

Add-on or plug-in
incompatibility
(addon comp)

Program does not work correctly for a major add-on/plug-
in or many add-ons/plug-ins due to incompatible APIs or
libraries, or a functionality, which was removed on purpose,
but is still used in the wild.

Compile Compiling errors.

Feature Introduce or remove features, including support adding.

Improvement
(improve)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other uplift reasons, e.g., data corruption and license incom-
patibility.

correspond to a confidence level of 95% and a confidence

interval of 5%). Inspired by Tan et al.’s work [16], we classify

the uplift reasons into 14 categories based on their (potential)

impact and detected fault types. Some of Tan et al.’s categories

are too broad, such as incorrect functionality. We break them

into more detailed uplift reasons, e.g., incorrect functionality

is split to incorrect rendering and (other) wrong functionality.

Some of Tan et al.’s categories, such as data corruption,

are with too few occurrences. We combine them into the

“other” category. Table III shows the uplift reasons used in

our classification. We perform a card sorting on each of the

sampled issues. By studying the issue report, the first and the

second authors of the paper individually classified each issue

into one or multiple uplift reasons (some uplift may be due

to multiple reasons). Then we compared their classifications

and resolved conflicts through discussions. We discussed each

conflict until an agreement was reached.

To connect uplift reasons with the risk of regression, we

will show the distribution of the faulty uplifts for each uplift

reason.

Moreover, to identify organization factors that play a role in

patch uplift decisions, we interviewed three of the current five

Mozilla release managers (the other remaining two are new to

the role) one at a time (to avoid them influencing each other),

asking them the following questions:

1) Which factors do you take into account when deciding
about an uplift?

2) Are there differences in how you handle uplifts in
different channels, and what are the differences?

3) How do you decide which developers you can trust?
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Figure 3: Distribution of uplift reasons in Beta.
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Figure 4: Distribution of uplift reasons in Release.

We also reported the results of our quantitative analysis to

them and asked for their feedback.

Results. Figures 3 and 4 show the distribution of the uplift

reasons, as well as the distribution of fault-inducing uplifts

and clean uplifts for each reason. We observe that, in the

Beta channel, most patches are uplifted because of a wrong

functionality, crash, security vulnerability, incompatibility with

some major websites, or to introduce/remove a feature. Most

regressions are introduced by the uplifts that resolved wrong

functionalities, crash, and security issues. For some uplift

reasons, including improvement, resolving add-on/plug-in in-

compatibility and compiling errors, few patches lead to faults

in our studied sample. However, a high percentage of patches

resolving performance and rendering problems introduced new

regressions.

In the Release channel, we observe the same top five uplift

reasons. Compared to the Beta channel, there are fewer regres-

sions; implying that these uplifted patches may have been more

carefully scrutinized, the rules for approval on the Release

channel being more strict. The fault-inducing patches only

concentrated on five uplift categories: crash, hang, security,

performance degradation, and incorrect rendering. Especially,

most patches for incorrect rendering lead to future faults.

These results suggest that, although developers prudently uplift

patches in the Release channel, they still need to carefully

review patches belonging to the aforementioned categories in

order to prevent delivering faults to users.

Through the interview, we learn that release managers take

into account several factors when deciding whether to approve

or reject a patch uplift request.
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1) Importance of the issue. This is measured through the

impact that rejecting the uplift would have on users.

2) Risk associated with the patch. Release managers share

the same view on the risks. They generally trust de-

velopers’ words, unless they have had bad experiences

with them (e.g., developers who caused regressions and

did not fix them); they evaluate the risk of the patch by

looking at its size and complexity, the presence/absence

of automated tests, the reviewers of the patch. In case of

doubts, release managers consult other release managers

or engineering managers to get a clearer picture.

3) Timing of the uplift in the Aurora/Beta cycle. They tend

to trust more patches that have been in Nightly for some

time and patches that are far from the next release date.

They almost always accept uplifts requested during the

first weeks of the Aurora cycle.

4) Verification of the patch. In particular for more stable

channels, they make sure that the patch has been verified

to actually fix the problems it was supposed to fix. If

needed, they ask QA to manually verify the patch. If it

is a patch that fixes a Nightly crash, before uplifting the

patch to Aurora, they will verify if users are no longer

reporting the crash.

They remarked that the uplift bar gets higher as they are get-

ting closer to release. After the middle point of the Beta cycle,

they only accept patches fixing high security issues, high-

volume crashes, severe recent regressions, severe performance

issues or memory leaks.
We presented the release managers with the results of

our quantitative and qualitative analysis and collected the

following observations.

They found that the response delta information is in-
teresting. After thinking about it, they all gave us similar

replies. When they are evaluating a complex issue and are

still undecided, they will not make the call immediately. One

release manager said that “when I reject something, I won’t
make the call immediately. I will think about it before doing
it, in case I change my mind or new facts are coming in the
equation”.

Regarding the landing delta, they were surprised, as they

thought they were more likely to accept patches with a higher

landing delta (that is, patches that have been in Nightly for

longer). They have also said that they are almost always

accepting patches during the first four weeks of the Aurora

cycle, which would explain this discrepancy (as those patches

have a small landing delta).
The interviewed release managers also told us that they take

into account the fault-proneness of components when making

uplift decisions; which is in line with what we found (some

components have a smaller acceptance rate). One release

manager told us that “some components always come out as
causing the most regressions, e.g., graphics layers, DOM”.
Regarding the trust in developers, they all mentioned the

assessment of risk as one of the first factors. One release

manager explained that “when they seem really overconfident
or aren’t telling me the whole story I lose some trust”,

another one stated that “some developers are taking a lot of
risks, some other less and are super reactive to fix potential
fallout”. This finding is consistent with the uplift criteria

followed at Facebook [17], where release managers tend to

trust developers who introduced less regressions in the past.

Regarding uplift reasons, release managers were not sur-

prised that test and compile changes are less frequent than

others. They argued that these kinds of changes are really

hard to move from the Nightly channel to a stabilization

channel (build or test failures, unless they happen on really

particular configurations, are noticed as soon as a patch is

applied, since tests are run for every changeset). For the same

reasons, they were not surprised that the uplift regressions are

rarely compile-related.

Release managers argued that the information about the

distribution of uplift reasons is useful for their future decision-

making. They were initially surprised to see that crash and

security-related uplifts often caused regressions, but they

thought that the urgency of those fixes might degrade their

quality. They were also interested in the results regarding the

categories where a high proportion of uplift patches caused

regressions (e.g., performance uplifts). They said that they

will start to take this information into account when deciding

about uplifts, and will be more careful with the uplifts in those

categories.

RQ2: What are the characteristics of uplifted patches that
introduced faults in the system?

Motivation. In Firefox’ Aurora, Beta and Release channels, we

found respectively 8.8%, 8.3%, and 7.9% of uplifted patches

that introduced regressions in the system. These patches not

only decrease the users-perceived software quality, but also

increase development costs, since developers, testers and re-

lease managers have to rework the faulty patches. In RQ1, we

have identified some characteristics of patches that are taken

into account by Mozilla release managers during patch uplifts.

In this research question, we are interested in identifying the

characteristics of uplifted patches that introduced faults in the

system.

1) Quantitative Analysis.

Approach. We apply the SZZ algorithm (described in Sec-

tion III-B2) on all fault-fixing changes to identify uplifted

patches that introduced a fault in the system. Next, we classify

the uplifted patches into two groups: fault-inducing uplifts

and clean uplifts. We use the 22 metrics listed in Table I to

assess the differences between these two groups. For each (mi)

metric, we test the following hypothesis:

H02
i : there is no difference between the values of mi for

uplifted patches that introduced a fault in the system and those
that did not.

Similar to RQ1, we use the Mann-Whitney U test and

Cliff’s Delta effect size to accept or reject the hypotheses, and

assess the magnitude of the differences between fault-inducing

uplifts and clean uplifts. We also test the hypotheses for all

three channels.
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Table IV: Fault-inducing Uplifts vs. Clean uplifts.

Channel Metric Faulty Clean p-value Effect size

Aurora Patch size 155.0 34.0 5.59e-65 large

Prior changes 362.5 164.0 3.80e-10 small

LOC 903.6 457.4 2.23e-06 small

Cyclomatic 2.5 2.0 1.08e-06 small

# of functions 34.3 17.0 2.25e-06 small

Max. nesting 2.7 2.0 5.14e-04 negligible

Comment ratio 0.2 0.1 4.00e-15 small

Module number 2.0 1.0 2.99e-24 small

Closeness 1.5 1.2 2.78e-13 small

Betweenness 45,221.9 880.7 2.65e-14 small

PageRank 1.7 1.4 1.95e-15 small

# of comments 26.0 20.0 1.76e-09 small

Developer exp. 28.5 10.0 1.19e-18 small

Reviewer exp. 9.0 2.0 6.63e-09 small

Comment words 10.0 2.0 9.08e-07 small

Developer senti. -3 -3 8.92e-04 negligible

Owner sentiment -2 -1 1.66e-04 negligible

Beta Patch size 141.0 32.0 6.44e-33 large

Prior changes 268.0 156.5 1.02e-03 small

LOC 895.5 476.3 1.66e-03 small

Cyclomatic 2.5 2.0 3.69e-03 small

# of functions 37.0 18.0 3.13e-03 small

Max. nesting 2.7 2.2 0.01 negligible

Comment ratio 0.2 0.1 4.61e-05 small

Module number 2.0 1.0 7.45e-12 small

Closeness 1.6 1.2 2.87e-07 small

Betweenness 35,661.7 1,327.8 6.00e-08 small

PageRank 1.7 1.4 1.08e-06 small

# of comments 28.0 22.0 1.18e-04 small

Comment words 8.0 3.0 0.04 negligible

Developer exp. 29.0 10.0 1.33e-08 small

Reviewer exp. 10.0 2.0 3.35e-05 small

Owner sentiment -2 -1 4.14e-03 small

Release Patch size 108.0 27.0 2.07e-03 large

Results. Table IV summarizes differences between the char-

acteristics of uplifted patches that introduced a fault in the

system and those that did not. We observe that fault-inducing

uplifts have significantly larger patch size (m11) than clean

ones, across all three channels. The effect size of the difference

is large. This implies that patches with larger modifications are

more likely to introduce a regression if uplifted. We observed

the following on the different channels:

• On Aurora and Beta channels, fault-inducing uplifts tend

to have more complex code in terms of LOC, cyclomatic

complexity, number of functions, and number of modules.

These patches often contain classes that are connected to

many other classes, in terms of closeness, betweenness

and PageRank. Fault-inducing uplifts also tend to have

higher comment ratios and tend to change files that were

changed more frequently. Interestingly, fault-inducing up-

lifts are frequently submitted by developers or reviewers

with high experience. Fault-inducing uplifts also have a

larger amount of comments than clean uplifts. A large

number of comments may be a sign that developers

are struggling with the patch, which may explain the

high fault-proneness. Although fault-inducing uplifts and

clean uplifts also display other significant differences (as

shown in Table IV), the magnitude of these differences

is negligible.

• For the Release channel, we do not observe a significant

difference between fault-inducing uplifts and clean uplifts

for the above metrics.

Overall, we reject H02
11 , i.e., fault-inducing uplifts have

larger patch size than clean uplifts. Release managers
should pay attention to large patches and reviewers should
scrutinize them carefully. Although the effect of other
characteristics is channel dependent, in Aurora and Beta,
we observe that patches with high complexity and cen-
trality tend to lead to faults. Uplift requests submitted by
experienced developers and reviewers also tend to lead to
regressions.

Similar to RQ1, we examined patch uplifts per component,

and observed that patch uplifts affecting certain components

(e.g., Graphics component) are more likely to cause regres-

sions than others. Some of the components with the highest

fault-inducing rates also have a low approval rate; probably

because the release managers were acting based on their

previous experiences with those components (for example, the

Web Audio component). Components like the Audio/Video,

which are involved in multiple patch uplift operations, also

have the highest fault-inducing rates; these components would

be inherently more prone to faults because of their complexity,

or technical debt.

We made a similar observation regarding developers’ sub-

mitting uplift requests. Many developers who submitted mul-

tiple uplift requests appear in the list of developers with high

fault-inducing rates; perhaps, by uplifting more patches, they

are taking more risks.

2) Qualitative Analysis. To understand the root cause of faults

in uplifted patches, we conduct a qualitative study.

Approach. We manually examined uplifted patches (from

the samples selected in RQ1) that introduced faults, and

classified the reasons behind the faults. Inspired by the work

of Tan et al [16], we defined seven possible root causes for

uplift faults (as shown in Table V). We identified respectively

132 and 17 fault-inducing uplifts from the Beta and Release

samples chosen in RQ1, and performed a card sorting to

classify each of the faults into one or multiple causes. As

in RQ1, the first and the second authors individually read

the issue reports and their fault-fixing patches to understand

the root causes of the faults (i.e., the reason why their

corresponding uplifted patches caused the faults) and classified

these root causes along our seven categories. Similar to RQ1,

disagreements were resolved through discussions.

We also interviewed release managers, asking them the

following question: What are the characteristics of fault-
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Table V: Fault reasons and descriptions.

Reason Description

Memory Memory errors, including memory leak, overflow, null
pointer dereference, dangling pointer, double free, uninitial-
ized memory read, and incorrect memory allocation.

Semantic Semantic errors, including incorrect control flow, missing
functionality, missing cases of a functionality, missing fea-
ture, incorrect exception handling, and incorrect processing
of equations and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-ons.

Concurrency Synchronization problems between multiple threads or pro-
cesses, e.g., incorrect mutex usage.

Compile Compile-time errors.

Other Other errors.
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Figure 5: Reasons of fault-inducing uplifts.

inducing patches that you are not currently taking enough into
account but could be considered in the future?

Results. Figure 5 depicts the distribution of the reasons why

fault-inducing uplift introduced regressions. In both channels,

semantic and memory-related errors are dominant root causes

of the uplift regressions. With a detailed check on the patches,

we find that many memory errors are due to null pointer

dereference and memory leak. In addition, incompatibility

of plug-ins and drivers also cause uplift regressions in both

channels. Concurrency issues are ranked as a popular cause

for Beta’s uplift regressions, but we do not find any example

of this category in the Release channel. In general, our results

suggest that, when uplifting a patch, release managers need
to carefully check for potential faults on the program’s
semantic meaning, memory operations, synchronization,
and third-party extension’s compatibility.

In the interview, all the release managers agreed that
it would be beneficial for them to have more detailed
information about the complexity of the patches they are
asked to evaluate and more information about the history
of the components involved in these patches. This resonates

with our findings. Release managers were surprised to see that

fault-inducing patches were more likely to be written by more

experienced developers and reviewed by more experienced

reviewers. They guess that these developers/reviewers are

assigned to more complex tasks with more complex solutions.

A release manager told us that “if you call in the big guns,
then it’s a warning sign”.

The fault categorization was also interesting for the release

managers, who told us that Mozilla is about to employ more

static analysis tools (e.g., Coverity [18]) and to move some

of their code from C++ to a safer language (e.g., Rust). It is

promising for them to see how many memory and concurrency

faults can be avoided by using these techniques, and how many

semantic and third-party faults can be reduced by enhancing

code review or testing efforts.

V. DISCUSSION

According to the results of RQ1 and RQ2, there are

statistically significant differences between the characteristics

of uplifted patches that introduced regressions and those that

were integrated successfully (i.e., clean uplifts that did not

induce faults). Also, fault-inducing uplifts are in the majority

of cases uplifts that were meant to resolve wrong function-

alities, crashes, security vulnerabilities, and incompatibilities

with websites. Furthermore, incorrect semantic code and mem-

ory operations are the most important root causes of uplift

regressions.

We believe that release management teams could leverage

these findings to build classifiers capable of automatically

assessing the risk associated with patch uplift candidates and

recommend patches that can be uplifted safely.

Exploring the possibility of building such classifiers is part

of our future work agenda.

VI. THREATS TO VALIDITY

Construct validity threats are concerned with the relation-

ship between theory and observation. Previous studies [19],

[8] suggested that complex code is a good indicator of fault-

proneness. We confirm this point in this study. However,

we found that fault-inducing patches are more likely to be

submitted by experienced developers, which contradicted our

expectations. We attribute this outcome to the fact that ex-

perienced developers are often assigned to difficult issues,

whose resolution tend to be more complex. Also, release

managers might overlook risks associated to patches submitted

by experienced developers, as these developers are often more

trusted than others.

Internal validity threats concern factors that may affect a

dependent variable and were not considered in the study. We

paid attention not to violate the assumptions of the statistical

tests that are performed in the paper. Specifically, in RQ1
and RQ2, we applied non-parametric tests that do not require

making assumptions on the distribution of our dataset.

Conclusion validity threats concern the relationship between

the treatments and the outcome. Before conducting the case

study, we limited our studied dataset within a duration that

covers consecutive series of relatively stable periods on all the

three uplift channels. In addition, we used a keyword matching

heuristic to identify fault-related issues. We manually validated

a random sample of 380 issues. All the authors of this paper

participated in the validation. Whenever there were diverging

opinions, we set up a meeting and discussed the issue until a

consensus was reached. As a result, we found that our heuristic

can achieve a precision of 87.3% and a recall of 78.2%,

when identifying fault-related issues. Moreover, we performed

a manual classification of the uplift reasons and the root causes
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of uplift regressions. To mitigate potential bias that may result

from our subjective opinions, we also discussed on each of our

classification conflicts until reaching a consensus. However, as

any other taxonomic study, we cannot guarantee a 100% of

accuracy on our classification results. Future replications are

welcomed to validate our work. Another issue on the manual

classification is that, although we randomly chose our samples

by applying a confidence level of 95% and a confidence

interval of 5%, our samples might not precisely reflect the

distributions of the uplift reasons and–or root causes of uplift

regressions on the whole Firefox dataset. Further investigations

on larger data sets are desirable.

External validity threats are concerned with the generaliz-

ability of our results. In this paper, we only studied Mozilla

Firefox. First, Mozilla Firefox is the most studied system for

issues related to rapid releases; moreover, the system’s data

are publicly available. We also have the opportunity to per-

form both quantitative and qualitative analyses (including the

interviews with release managers) on this system. However, we

should recognize that our findings may not be generalizable to

other systems. In the future, we plan to collaborate with other

software organizations, to validate and extend the results of

this work. In addition, more studies on other systems with

other programming languages are suitable to further validate

our results. To facilitate future replication studies, we share

our datasets and scripts at: https://github.com/swatlab/uplift-

analysis.

VII. RELATED WORK

Patch uplift is an activity performed during the release

engineering process. Hence, in this section, we present and

discuss relevant literature on release engineering.

Release engineering encompasses all the activities aimed

at “building a pipeline that transforms source code into an

integrated, compiled, packaged, tested, and signed product that

is ready for release” [20].

Since the adoption of the rapid release model [2] by Mozilla

in 2011, a plethora of studies have focused on the impact of

rapid release strategies on software quality. Khomh et al. [2]

compared crash rates, median uptime, and the proportion

of post-release bugs between the versions of Firefox that

followed a traditional release cycle and those that followed

a rapid release cycle. They observed that short release cycles

do not induce significantly more bugs. However, compared

to traditional releases, users experience bugs earlier during

software execution. Nevertheless, they also observed that post-

release bugs are fixed faster under the rapid release model.

Da Costa et al. [21] studied the impact of Mozilla’s rapid

release cycles on the integration delay of addressed issues.

They found that, compared to the traditional release model,

the rapid release model does not deliver addressed issues to

end users more quickly, which is contrary to expectations.

Another important aspect of release engineering that has

been investigated by the community is the integration of urgent

patches that are used to fix severe problems, such as frequent

crashes or security bugs, or to introduce important features.

Urgent patches break the balance between new feature work

and software quality, and hence could lead to faults and

failures. Hassan et al. [22] investigated emergency updates

for top Android apps and identified eight patterns along the

following two categories: “updates due to deployment issues”

and “updates due to source code changes”. They suggested

to limit the number of emergency updates that fall in these

patterns, since they are likely to have a negative impact on

users’ satisfaction. In a recent work, Lin et al. [23] empirically

analyzed urgent updates in 50 most popular games on the

Steam platform, and observed that the choice of the release

strategy affects the proportion of urgent updates, i.e., games

that followed a rapid release model had a higher proportion

of urgent patches in comparison to those that followed the

traditional release model. Rahman et al. [24] examined the

“rush to release” period on Linux and Chrome. They observed

that experienced developers are often allowed to make changes

right before stabilization occurs and these changes are added

directly to the stabilization line. They also found that there is

a rush in the number of commits right before a new release

is added to the stabilization channel, to add final features. In

a following work, Rahman et al. [25] observed that feature

toggles [26] can effectively turned off faulty urgent patches,

which limits the impact of faulty patches.

To the best of the authors’ knowledge, none of these prior

works has empirically investigated how urgent patches in the

rapid release model affect software quality in terms of fault-

proneness, and how the reliability of the integration of urgent

updates could be improved. This paper fills this gap in the

literature by investigating the reliability of the Mozilla’s uplift

process, since uplifted patches are urgent updates.

VIII. CONCLUSION

Mozilla follows a rapid release model, which uses 18 weeks

to deliver fault fixes and new features to users. Frequently,

certain patches that fix critical issues, or implement high-value

features are promoted directly from the development channel

to a stabilization channel, because they are too urgent and

cannot wait for the next release train. This practice, known

as patch uplift, is risky because the time allowed for the

stabilization of the uplifted patches is short. In average, 8%

of uplifted patches introduced a regression in the code of

Firefox. In this paper, we investigated the decision making

process of patch uplift at Mozilla and observed that release

managers are more inclined to accept patch uplift requests

that concern certain specific components, and–or that are

submitted by certain specific developers. We examined the

characteristics of uplifted patches that introduced regressions

in the code and found that they are more complex than

clean uplifts, and they tend to change a higher number of

lines of code. Most regressions are caused by patch uplifts

aimed at fixing wrong functionalities and crashes. The most

common root causes of faults in uplifted patches are semantic

and memory errors. Reviewers and release managers should

carefully inspect complex patches before allowing their uplift.
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